The membrane structure should maintain the membrane materials in tension for structural stability guaranty. The anchoring part in the membrane structure is an important part. It has the function to introduce tension into membrane materials and function to transmit stress which membrane materials receives to boundary structure such as steel frames. In this paper, it grasps anchoring system of the anchoring part in the membrane structure concerning the fracturing characteristic condition of membrane structure, and the influence which is caused to yield it designates the stress state when breaking the membrane structure which includes the anchoring part and that stress transition mechanism is elucidated as purpose. This paper follows to previous paper, does 1 axial tensile test concerning the bolting part specimen, grasp of fracturing progress of the bolting part and the edge rope and hardness of the rubber, does the appraisal in addition with the difference of bolt tightening torque. As a result, the influence which the bolt anchoring exerts on the fracturing characteristics of the membrane material in the membrane structure anchoring part is examined.
This paper aims to experimentally and numerically explore fracture mechanism characteristics of ultra-thin chopped carbon fiber tape-reinforced thermoplastics (UT-CTT) hat-shaped hollow beam under transverse static and impact loadings. Three distinct failure modes were observed in the impact bending tests, whereas only one similar progressive collapse mode was observed in the transverse bending tests. The numerical model was to incorporate some hypothetical inter-layers in UT-CTT and assign them with the failure model as cohesive zone model, which can perform non-linear characteristics with failure criterion for representing delamination failure. The dynamic material parameters for the impact model were theoretically predicted with consideration of strain-rate dependency. It shows that the proposed modeling approach for interacting damage modes can serve as a benchmark for modeling damage coupling in composite materials.
The fatigue strength of a nickel-base superalloy was studied. Stress-controlled fatigue tests were carried out at 700 oC and 5 Hz using triangular wave forms. In this study, two kinds of testing procedures were adopted. One is the conventional tension-zero fatigue test(R = 0). The other was a procedure in which the maximum stress was held at 1000 MPa and the minimum stress was diverse from zero to 1000 MPa at 24 and 700 oC. The results of the fatigue tests at 700 oC indicate that the fracture mechanism changed according to both the mean stress and the stress range. At a higher stress range, γ ' precipitates are sheared by a/2<110> dislocation pairs coupled by APB. Therefore, in a large stress range, the deformation occurred by shearing of γ ' by a/2<110> dislocations, which brought about crystallographic shear fracture. As the stress range was decreased, the fracture mode gradually changed from crystallographic shear fracture to gradual growth of fatigue cracks. At an intermediate stress range, as it became more difficult for a/2<110> dislocation pairs to shear γ ' particles, cracks started to propagate in the matrix, avoiding the harder γ ' particles. High mean stress induced creep deformation, that is, γ ' particles were sheared by {111}<112> slip systems, which led to the formation of stacking faults in the precipitates. Thus, the change in fracture mechanism brought about the inversion of the S-N curves.
폐콘크리트로부터 생산된 순환골재의 사용은 환경보존과 자원의 재활용 관점에서 매우 유용하며, 순환골재 콘크리트에서 압축, 인장, 휨 및 부착강도, 탄성계수 등이 중요한 기계적 특성요소로 작용하게 된다. 특히 압축을 받는 순환골재 콘크리트의 응력-변형률 관계 및 파괴진전 양상 규명은 순환골재 콘크리트를 사용한 구조물 설계 및 수치해석 등 이론적 연구에서도 매우 중요한 의미를 가진다. 따라서 본 연구에서는 순환골재 콘크리트의 파괴진전특성을 규명하기 위하여 압축하중을 받는 콘크리트의 미세균열 등 손상특성을 검출하기 위하여 AE 기법을 사용하였다. 압축거동특성 및 AE 신호특성을 분석한 결과, 순환굵은골재 콘크리트의 균열 및 파괴거동은 천연 및 순환잔골재를 사용한 콘크리트와 상이한 것으로 나타났다.