검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 149

        21.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, UiO-66-NH2 was synthesized and incorporated with graphene aerosol (UiO-66-NH2/GA) and ethylenediamine functionalized graphene oxide (UiO-66-NH2/GO-NH2). These composites were characterized using infrared spectroscopy, powder X-ray diffraction, ultraviolet–visible light spectroscopy, scanning electron microscope, and energy-dispersive X-ray spectroscopy. UiO-66-NH2/GO-NH2 exhibited 93% adsorption of quinoline in 5 h, UiO-66-NH2 and UiO-66-NH2/GA presented 80.4% and 86.5%, respectively. The high adsorption observed on UiO-66-NH2/GO-NH2 was attributed to the unique electronic properties, and hydrogen bonding between the nitrogen atom of quinoline and NH2- phenyl fragment of UiO-66-NH2, and N–H of ethylenediamine. GO also offered combined strong π–π interactions on its surface, and the oxygen coverage (~ 50%) on GO within the structure is responsible for the formation of strong hydrogen bonds with quinoline. Theoretical calculation suggested that UiO-66-NH2/GO-NH2 presented a more favourable adsorption energy (− 18.584 kcal/ mol) compared to UiO-66-NH2 (− 16.549 kcal/mol) and UiO-66-NH2/GA (− 13.991 kcal/mol). These results indicate that nanocomposites have a potential application in quinoline capture technologies in the process of adsorptive denitrogenation.
        4,600원
        31.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of the laser ablation duration of reduced graphene oxide sheets on their optical properties was studied. After 30 min of ablation, the average lateral size of reduced graphene oxide sheets decreases from 347.4 ± 86.5 nm to 98.8 ± 36.0. The sizes of almost all particles are in the range up to 100 nm, which was confirmed by transmission electron microscopy and dynamic light scattering data. The FTIR spectroscopy data showed that after ablation the intensity of the bands associated with O–H, C–OH and C=O vibrations were noticeably decreased. The optical density and the fluorescence intensity of reduced graphene oxide also depend on the ablation time. After ablation, the reduced graphene oxide fluorescence intensity increased 2–3 times. The fluorescence lifetime decreases both for the first (from 1.36 ns to 0.71 ns) and second (from 6.03 to 3.66 ns) components. A broad band was recorded in the long-lived luminescence spectrum. The long-lived luminescence intensity is higher on 80% for the samples after 30 min of ablation compared to the unablated sample. It was assumed that during laser ablation of reduced graphene oxide a change in the ratio between oxidized and sp2- hybridized carbon occurs. This opens up possibilities for controlling the optical properties of reduced graphene oxide.
        4,000원
        32.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For graphene oxide (GO) composite hydrogels, a two-dimensional GO material is introduced into them, whose special structure is used to improve their properties. GO contains abundant oxygen-containing functional groups, which can improve the mechanical properties of hydrogels and support the application needs. Especially, the unique-conjugated structure of GO can endow or enhance the stimulation response of hydrogels. Therefore, GO composite hydrogels have a great potential in the field of wearable devices. We referred to the works published in recent years, and reviewed from these aspects: (a) structure of GO; (b) factors affecting the mechanical properties of the composite hydrogel, including hydrogen bond, ionic bond, coordination bond and physical crosslinking; (c) stimuli and signals; (d) challenges. Finally, we summarized the research progress of GO composite hydrogels in the field of wearable devices, and put forward some prospects.
        4,900원
        33.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As frontier materials, graphene oxide (GO) and graphene have penetrated almost all research areas and advanced numerous technologies in sensing, electronics, energy storage, catalysis, water treatment, advanced composites, biomedical, and more. However, the affordable large-scale synthesis of high-quality GO and graphene remains a significant challenge that negatively affects its commercialisation. In this article, firstly, a simple, scalable approach was demonstrated to synthesise high-quality, high yield GO by modifying the improved Hummers method. The advantages of the optimised process are reduced oxidation time, straightforward washing steps without using coagulation step, reduction in cost as eliminating the use of phosphoric acid, use of minimum chemical reagents, and increased production of GO per batch (~ 62 g). Subsequently, the produced GO was reduced to reduced graphene oxide (rGO) using three different approaches: green reduction using ascorbic acid, hydrothermal and thermal reduction techniques. The GO and rGO samples were characterised using various microscopy and spectroscopy techniques such as XRD, Raman, SEM, TEM, XPS and TGA. The rGO prepared using different methods were compared thoroughly, and it was noticed that rGO produced by ascorbic acid reduction has high quality and high yield. Furthermore, surface (surface wettability, zeta potential and surface area) and electrical properties of GO and different rGO were evaluated. The presented synthesis processes might be potentially scaled up for large-scale production of GO and rGO.
        4,900원
        37.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cerium oxide decorated on nickel hydroxide anchored on reduced graphene oxide (Ce-Ni(OH)2/rGO) composite with hexagonal structures were synthesized by facile hydrothermal method. Fourier transform infrared spectroscopy (FT-IR), highresolution transmission electron microscopy with selected area diffraction (HRTEM-SAED), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer– Emmett–Teller (BET) surface area analysis and electrochemical technology were used to characterize the composite. Due to its unique two-dimensional structures and synergistic effect among Ce2O3, Ni(OH)2 and rGO components indicated twodimensional hexagonal nano Ce-Ni(OH)2/rGO composite is promising electrode material for improved electrochemical H2O2 sensing application. From 50 to 800 μM, the H2O2 concentration was linearly proportional to the oxidation current, with a lower detection of limit of 10.5 μM (S/N = 3). The sensor has a higher sensitivity of 0.625 μA μM−1 cm− 2. In addition, the sensor demonstrated high selectivity, repeatability and stability. These findings proved the viability of the synthetic method and the potential of the composites as a H2O2 sensing option.
        4,600원
        38.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The reduced graphene oxide (rGO) has attracted more and more attention in recent years. How to choose a suitable reduction method to prepare rGO is a critical problem in the preparation of graphene composites. In this work, the differences of rGO reduced by thermal, microwave, Ultraviolet (UV) and reducing agent were studied. The reduction degree and functional groups of rGO were compared by SEM, XPS, Raman, FTIR and TGA. Thermal can remove most of the oxygen-containing groups of graphene oxide (GO) and the thermal reduction is the most effective reduction method. UV light can directly act on the unstable oxygen-containing groups, and its reduction efficiency is second only to thermal reduction. The efficiency of chemical reduction is not as good as that of UV reduction, because the reducing agent only act on the surface of GO. Microwave reduction is a mild thermal reduction with the lowest efficiency, but the residual oxygen-containing groups increase the hydrophilicity of rGO. To sum up, this work studies that rGO prepared by different reduction methods has different characteristics, which provides a reference for selecting appropriate reduction methods to prepare graphene composites with better properties.
        4,000원
        39.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have prepared MIL-101/graphene oxide (GO) composites with various mixing molar ratio of Fe-containing metal– organic frameworks (MOFs) against GO. When synthesizing MOFs, it was possible to synthesize uniform crystal powders using hydrothermal method. MIL-101 consists of a terephthalic acid (TPA) ligand, with the central metal composed of Fe, which was the working electrode material for supercapacitors. Field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis had been done to ascertain microstructures and morphologies of the composites. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge measurements were performed to analyze the electrochemical properties of the composite electrodes in 6 M KOH electrolyte. By controlling the metal ligand mole ratio against GO, we prepared a changed MOF structure and a different composite morphology, which could be studied as one of the promising optimized electrode materials for supercapacitors.
        4,200원
        40.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The remarkable electrical, thermal, mechanical, and optical properties of graphene and its derivative grapheme oxide have recently gained great importance, along with the large surface area and single-atoms thickness. In this respect, several techniques of synthesis such as chemical exfoliation, mechanical exfoliation, or chemical synthesis have been discovered. However, the development of graphene with fewer defects and on a large scale poses major challenges; therefore, it is increasingly necessary to produce it in large proportions with high quality. This paper reviews the top-down synthesis approach of graphene and its well-known derivative graphene oxide. Furthermore, characterization of graphene oxide nanomaterial is a critical component of the analysis. The characterization techniques employed to determine the quality, defects intensity, number of layers, and structures for graphene oxide nanomaterial at the atomic scale. This article focuses on the different involved characterization methodology for graphene oxide with their percentage utilization for the past 11 years. Additionally, reviewing all of the characterization literature for the last 11 years would be a difficult task. Therefore, the aim is to outline the existing state of graphene oxide by different characterization techniques and provide a comparative analysis based on their percentage utilization.
        8,700원
        1 2 3 4 5