검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 154

        81.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The efficiencies of thermal power system using fossil fuel depend on heat exchangers which extract energy from the exhaust gas before it is expelled to the atmosphere. To increase heat transfer efficiency it is very important to maintain the surface of heat exchanger as clean condition. The accepted skill of cleaning of fouled surface of heat exchanger is soot blowing. A high pressure jet of air is forced through the flat surface of plate to remove the deposit of fouling. There is, however, little knowledge of the fundamental principles of how the jet behave on the surface and how the jet actually removes the deposit. Therefore, the study focuses on the measuring of cleaning area and cleaning dwell time after accumulating the simulated deposit on the flat surface. The deposit test rig was built for the study and simulated deposit material is used after measuring the physical property of the each material by shearing stress test. Much data was obtained for the analysis by the parameters change such as the different jet speed, different inner pressure and variable distance of the jet from the test rig surface. The experimental data was compared with the theoretical equation and most of the data matches well except some extreme cases.
        4,000원
        82.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Jet impingement heat transfer is a very effective technique for exchanging high heat fluxs between a heated plate and a fluid. The purpose of this study is to investigate the heat transfer characteristics of a rectangular free water jet normally or obliquely impinging onto a flat plate. The water jet issued from a rectangular slot nozzle with a cross section of 1.5mm⨉40mm. The mean velocities of nozzle exit were varied from 1.5m/s to 6.1m/s. The Reynolds number range based on the nozzle gap and the mean velocity was 2200∼8800. Various impingement angles between the vertical rectangular water jet and the inclined flat surface were investigated : 90˚, 70˚, 60˚ and 50˚ . The Nusselt number is high at the impingement line, and decreases with departures from it. The stagnation Nusselt numbers were compared to predictions of several correlations proposed by other researchers. The locations of the peak Nusselt numbers do not coincide with the geometric center of the rectangular jet on the surface.
        4,200원
        83.
        2015.12 구독 인증기관 무료, 개인회원 유료
        This study calculated the overall heat transfer coefficient (U-value) of greenhouse covering materials with thermal screens using a simulation model and then estimated the validity of the calculated results by comparison with measured values. The U-value decreased gradually as the thickness of the air space between the double glazing increased, and then remained essentially constant at thicknesses exceeding 25 mm. The U-value also increased with the difference in temperature between the inside and outside of the hot box. The vigorous convective heat transfer between two plastic films caused unsteady heat flow and then created a nonlinear temperature distribution in the air space. The distance did not affect the U-value at distances of 50~200 mm between the plastic covering and thermal curtain. The numerical calculation results, with and without sky radiation, were in accord with the experimental results for a 30°C temperature difference between the inside and outside of the hot box. In conclusion, a reliable Uvalue can be calculated for a temperature difference of 30°C or more between the inside and outside of the hot box.
        4,000원
        85.
        2015.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.
        4,000원
        86.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Evaluation of the wind speed effect on the temperature drop of an asphalt mixture during construction, by using the transient heat transfer theory and dominant convective heat transfer coefficient model. METHODS: Finite difference method (FDM) is used to solve the transient heat transfer difference equation numerically for various wind speeds and initial temperature conditions. The Blasius convective heat transfer coefficient model is adapted to account for the effect of wind speed in the temperature predictions of the asphalt mixture, and the Beaufort number is used to select a reasonable wind speed for the analysis. As a function of time and depth, the temperature of the pavement structure is predicted and analyzed for the given initial conditions. RESULTS : The effect of wind speed on the temperature drop of asphalt mixture is found to be significant. It seems that wind speed is another parameter to be accounted for in the construction specifications for obtaining a better quality of the asphalt mixture. CONCLUSIONS: It is concluded that wind speed has a significant effect on the temperature drop of the asphalt layer. Although additional field observations have to be made to reflect the effect of wind speed on the construction specifications, it appears that wind speed is a dominant variable to be considered, in addition to the atmospheric temperature.
        4,000원
        87.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present experimental study investigates single-phase heat transfer coefficients downstream of support grid in 6×6 rod bundles. Support grid with Split mixing vanes enhance heat transfer in rod bundles by generating turbulence but this turbulence is confined to a short distance. Support grid with large scale vortex flow(LSVF) mixing vanes enhanced heat transfer to a longer distance. In this study, the experiments were performed at reynolds numbers of 50,000. The characteristics of the heat transfer enhancement of the Split mixing vane and those of the LSVF mixing vane were compared. The results showed that the characteristics of the heat transfer enhancement of rods by the Split mixing vane were limited to 10 Dh after the spacer grid, but those by the LSVF mixing vane were maintained until 15 Dh after the spacer grid. For the reynolds number of 50,000, the heat transfer enhancement effect was 3.0% greater when using the LSVF mixing vane than when using the Split mixing vane between the 1 ∼ 15 Dh interval after the spacer grid.
        4,000원
        88.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The heat transfer characteristics of a spiral type EGR cooler for a diesel engine are numerically analyzed to investigate the performance of EGR cooler. The commercial code FLUENT is utilized to simulate a single spiral tube with constant wall temperature conditions. The numerical analysis is performed with the variation of exhaust gas flow rate. The results show that as mass flow rate increases, temperature difference between inlet and outlet and efficiency become lower, while heat flux gets higher. The empirical correlation is derived in forms of Nusslet number and Reynolds number based on the numerical results.
        4,000원
        89.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Computational algorithms and their implementations are studied for the treatments of kernel function’s shadow effects, which occurs in the application of the BEM(boundary element method) for radiation heat transfer analysis. In this problem, surfaces are assumed to be diffuse and gray placed in two-dimensional enclosures with transparent medium. Self-blocking or third party blocking is possible when the radiosity from the BEM nodes cannot reach the destination points. Also the third party blocking can be the partial or total blocking case. Algorithms, which can accurately recognize the each blocking cases and reflect the shadow effects to the BEM kernel function, are studied in this paper. Effective implementation methods are presented, and their results are verified by the test problem
        4,000원
        90.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This research is a basic study for application method in korea of energy harvesting technology, and it is a research to find out the direction of architectural planning through analyzing cases of interseasonal heat transfer system applied buildings. METHODS : In this paper authors investigate application necessity of energy harvesting technology, we analyzed energy use status of building section through analyzing domestic energy consumption status and analyzed domestic renewable energy generation potential. Also we study the features of energy harvesting technology, interseasonal heat transfer system, and case study on interseasonal heat transfer system applied buildings. RESULTS : On the basis of case study on interseasonal heat transfer system applied buildings, we analyzed feasibility study and classified into four sections(economic, environment, design, applicability), and suggested directions of architectural planning. CONCLUSIONS: Economic renewable energy for public and commercial buildings(hospitals, offices, schools, factories) can be provided effectively using Interseasonal Heat Transfer.
        4,300원
        91.
        2014.02 구독 인증기관 무료, 개인회원 유료
        The heat transfer characteristics of laminar syngas-fuel/air mixture with 10% hydrogen content impinging normally to a flat plate has been conducted experimentally. There were investigated by the effects of impinging distance, Reynolds number and equivalence ratio as major parameters on heat fluxes of stagnation point with the direct photos and data acquisitions from heat flux sensor. There were 3 times of maximum and 2 times minimum heat flux of stagnation point with respect to the impinging distance for the investigation of Reynolds number and equivalence ratio effect. The heat transfer characteristics between the stagnation and wall jet region in radial heat flux profiles was also investigated by the heat flux profiles.
        4,000원
        92.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 일중피복온실의 피복재에 대하여 우리나라 환경에 적합한 관류열전달계수를 산정하는 방법을 찾아내고 검증하여 다양한 온실조건 및 환경조건에서 관류열전달계수를 산정할 수 있는 모델을 제시하는 것이다. 온실내부 및 외부온도와 피복재 표면온도와의 상관관계를 분석한 결과 주간 및 야간 온도를 모두 고려하였을 때보다 야간온도만을 고려하였을 경우가 상관성이 훨씬 더 높은 것으로 나타났다. 피복재의 표면온도가 온실의 외부온도보다는 내부온도와 상관성이 더 높은 것으로 나타났다. 관류열전달계수를 산정하는데 사용된 5가지 종류의 대류 및 복사열전달계수 산정식을 비교한 결과 Kittas가 제안한 대류 및 복사열전달계수 산정식이 가장 적합한 것으로 나타났다. 피복재 표면온도의 측정값과 계산 값의 상관성을 분석한 결과 직선의 기울기는 1.009이고 절편은 0.001이며 결정계수가 0.98로 나타나 본 연구에서 제시된 관류열전달계수 산정모델이 신뢰성이 있음을 확인할 수 있었다. 온실내부로부터 피복재 내부표면으로 전달되는 열흐름량의 경우 모든 풍속구간에 대해 대류열전달량이 복사열전달량보다 더 컸으며 풍속이 증가할수록 그 차이가 증가하였다. 외부표면에서 손실되는 열흐름량의 경우 풍속이 낮을 때에는 대류열전달량에 비해 복사열전달량이 더 컸으나 풍속이 증가함에 따라 그 차이는 점점 줄어들어 풍속이 높을 때에는 대류열전달량이 더 커지는 것으로 나타났다. 피복재 외부 표면의 대류열전달량은 내부표면의 대류열전달량에 직선적으로 비례하여 증가하는 것으로 나타났다. 풍속이 증가함에 따라 관류열전달계수는 증가하고 피복재의 표면 온도는 감소하는 것을 확인할 수 있었고, 변화추세를 보면 관류열전달계수는 거듭제곱함수와 그리고 표면온도는 로그함수와 잘 일치하였다.
        4,000원
        93.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, the flow and forced convective heat transfer analysis of HEV battery pack were investigated numerically regarding the different shapes of the inlet, outlet, and battery case. The velocity ,pressure, and temperature distribution of the fluid at the inlet part of the battery module were numerically calculated for the optimum design of the battery pack for three different inlet shapes of the battery module. In addition, the local battery temperature for height and width and convective heat transfer coefficient of the air inside the battery pack were numerically obtained. Ultimately, the circle shape of the inlet and outlet were determined for the energy-effective shape of the battery pack.
        4,000원
        94.
        2013.02 구독 인증기관 무료, 개인회원 유료
        The heat generated in contact type braking system can cause an unacceptable braking performance. Thermal behavior of ventilated disk brake system is presented in this paper. The temperature and velocity fields of 3-D unsteady simulated model are obtained using a software package "FLUENT". The numerical results show that there exits a temperature nonuniformity between the disk faces contacting with pads. The conduction rate through the disk and pad is calculated and the effect of material conductivity is also investigated.
        4,000원
        95.
        2012.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hollow silica spheres were prepared by spray drying of precursor solution of colloidal silica. The precursor solution is composed of 10-20 nm colloidal silica dispersed in a water or ethanol-water mixture solvent with additives of tris hydroxymethyl aminomethane. The effect of pH and concentrations of the precursor and additives on the formation of hollow sphere particles was studied. The spray drying process parameters of the precursor feeding rate, inlet temperature, and gas flow rate are controlled to produce the hollow spherical silica. The mixed solvent of ethanol and water was preferred because it improved the hollowness of the spheres better than plain water did. It was possible to obtain hollow silica from high concentration of 14.3 wt% silica precursor with pH 3. The thermal conductivity and total solar reflectivity of the hollow silica sample was measured and compared with those values of other commercial insulating fillers of glass beads and TiO2 for applications of insulating paint, in which the glass beads are representative of the low thermal conductive fillers and the TiO2 is representative of infrared reflective fillers. The thermal conductivity of hollow silica was comparable to that of the glass beads and the total solar reflectivity was higher than that of TiO2.
        4,000원
        96.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        本論文, 旨在要通過考察兩漢時期黃老學代表著作『淮南子』, 探討宇宙生成論的基本含義。宇宙生成論就探討如下幾個問題: 宇宙萬物之根源, 其根源如何發展到具體萬物, 天下萬物之最終根源是如何規定『淮南子』繼承了先秦時期老莊哲學思想、氣論和陰陽五行思想及兩漢時期所發展的自然科學之成果, 而使之適應於自己宇宙論體系之需要。.今爲止, 大多學者從以下方面起規定『淮南子』的宇宙生成論: 有些學者把『淮南子』規定爲‘雜家’而其理論體系最終落到於自相矛盾; .一些學者都從‘道’‘氣’.念的含義和兩者之間的關系問題出發, 建立起了其宇宙生成論的理解方式。從道氣兩個.念之間的關系問題上, 就發生了‘氣一元論’和‘以道爲主的自然觀’而再分爲‘道.氣’或‘道生氣’的觀點。那., 如何解釋『淮南子』所論的宇宙生成論才接近於其.正的含義? 筆者認爲,『淮南子』基本上堅持了宇宙萬物始於整體(‘一氣’)的立場。『淮南子』就把這種整體稱爲‘太昭=虛.=一’, 而從這個狀態起發生了‘陰陽二氣’的分化而最終形成了天地萬物。但在這個過程上, 我們必須解釋宇宙生成的動力是什., 因而『淮南子』提到了 ‘道始于虛.’、‘道始於一’的觀點。.是說, 道沒有直接參與於萬物生成過程, 而道就是所引起各個生成過程的基本動力, 所以『淮南子』把‘道’理解爲宇宙萬物的最終本原。如此, ..淮南子..就把‘道’和 ‘氣’綜合起來, 最終建立了‘以道爲本’的氣化宇宙論。對於向後中國哲學思想裏所發展的宇宙論體系, 『淮南子』的宇宙生成論.生了重大的影響。
        4,000원
        97.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 산업용 열교환기 및 상용 파이프의 최적 설계를 위하여 열교환기 내의 사각형 단면 파이프의 shear-thickening 비뉴톤 유체의 압력강하 및 대류 열전달률을 수치해석적으로 수행하였다. shear-thickening 유체의 구성 방정식은 기존의 비뉴톤 유체 멱법칙을 보완한 확장 멱법칙 모델을 채택하였다. 파이프 내의 압력강하를 의미하는 마찰계수와 확장 레이놀즈 수의 곱은 기존 연구의 비교자료와 비교할 때 뉴톤 유체 영역과 멱법칙 영역에서 각각 0.018% 및 0.06% 내에서 일치함을 보였고, 대류 열전달률을 의미하는 뉴셀트 수는 문헌치와 비교할 때 뉴톤 유체 영역과 멱법칙 영역에서 각각 0.025% 및 0.14% 내에서 일치함을 보였다. 비뉴톤 확장 멱법칙 유체 모델의 형태를 띠는 shear-thickening 유체를 열교환기 또는 상용파이프 내의 사각형 단면 파이프 내에서 사용하면 유동지수(n)에 따라서 뉴톤 유체보다 최대 160%의 압력강하를 증가시켰고 최대 14%의 대류 열전달 감소를 발생시킬 수 있었다.
        4,000원
        99.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research is a basic researching process for producing solid fuel that mixing paper sludge and Heat Transfer Medium Oil. Under the presence of Heat Transfer Medium Oil, paper sludge is heated and dried with home appliance microwave for comparing drying efficiency and energy efficiency of different types of drying method. As a result, Heat Transfer Medium Oil and paper mixing case of drying method, OMD, is the most efficient way to shorten the time for evaporating moisture in the paper sludge. In addition, heat transfer effect and density is increased with adding Heat Transfer Medium Oil by microwave. Future more, OMD's energy cost for evaporating whole moisture is 78% cheaper than MD. Also, OMD process shows the best energy efficiency with comparing other process. Evaporation rate of paper sludge evaporation process with microwave is 11.66% increased by adding Heat Transfer Medium Oil 150g. Preheating Heat Transfer Medium Oil or improving different ways injecting Heat Transfer Medium Oil is a good way to increase a rate of initiative moisture evaporation process.
        4,000원
        100.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to find better performance of heat sink, in this research, different cases were analysed by changing number of slots and shape of fins. Round shape fins which have wide surface showed 24% better heat transfer rate than vertical fins. There were not big discrepancies between 1 slot and 2 slots fins. Consequently, for better performance of heat sink, developments for widening surface and better material for high heat transfer rate are needed.
        4,000원
        1 2 3 4 5