검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 46

        21.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Shape optimization is needed to enhance the performance or efficiency of many industrial products, for instance, such as small-scale electric parts, automotive design and so on. In, especially, small-scale apparatus with heat transfer, it is not easy to decide optimal shape of apparatus. Therefore, the shape of power auxiliary apparatus in automotive engine was investigated using numerical analysis which includes k- model and unsteady state. The relations between temperature and heat transfer were simulated in case of 3 Type and 3 Point for power auxiliary apparatus. As the results, the heat transfer was decreased due to flow recirculation in case of Type-1. Further high temperature did not always mean high heat transfer when the shape interacted with surrounding fluid.
        4,000원
        22.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the heat transfer characteristics of pilot wave heat exchanger for white smoke reduction system was investigated. The performance of the wave and honeycomb heat exchanger combined with the first stage, second stage and third stage was tested using a calorimeter. Air and water inlet/outlet temperature and flow rate, pressure drop and dehumidification amount were measured to compare the heat transfer performance according to the type and the combination of heat exchanger. The heat transfer rate and dehumidification amount of the wave heat exchanger were higher than that of the honeycomb heat exchanger, and the pressure drop was low. As the stage increased, the heat transfer rate and the increase of the dehumidification amount were more pronounced, and the pressure drop linearly increased. The wave heat exchanger had a lower flow resistance than the honeycomb heat exchanger with the honeycomb structure and had a higher heat transfer effect due to the convection, so the water outlet temperature was higher in the wave heat exchanger.
        4,000원
        23.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The heat transfer characteristics of forced convection according to the geometric shapes with four rectangular blocks in a horizontal PCB channel was analyzed numerically using SST (Shear Stress Transport) turbulence model. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature and air velocity were respectively 300 K and 3.84 m/s and the heat flux of the block surface was 358 W/㎡. The shape factors of block were width, height, spacing and channel entrance height. As the results, the heat transfer rate was decreased as the width ratio (x/h) was increased, while it was increased as the height ratio (h/x) is increased. Also as the block spacing ratio (s/x) was increased, the heat transfer effects was not significantly affected. And as the channel entrance height ratio (H/x) was increased, the heat transfer performance was decreased.
        4,000원
        24.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the heat flow characteristics of wave heat exchanger was investigated by being applied to the white smoke reduction system. Through numerical analysis, the heat transfer and flow characteristics of the wave heat exchanger with the change of inlet condition of air-side and water-side were analyzed. To investigate the temperature, the absolute humidity, heat transfer rate, pressure drop and turbulence characteristics of the wave heat exchanger, the simulation analysis was conducted by using the commercial computational fluid dynamics software (Solidworks Flow Simulation) under uniform flow conditions. As the inflow rate of air decreased and the inflow temperature of water increased, the heat transfer coefficient of the wave heat exchanger decreased. When the experimental conditions of water-side were the same, the air outlet temperature and absolute humidity of the wave heat exchanger increased with increasing inflow rate of air. To reduce the white smoke, the air outlet temperature and absolute humidity of the wave heat exchanger must be reduced. Therefore, the lower the air velocity and the water inflow temperature into the wave heat exchanger, the more effective it is.
        4,000원
        25.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        단동 이중비닐하우스에서 수막에 의한 열전달 특성 및 가온효과를 구명하기 위하여 작물이 재배되는 수막온실의 실내외 기온과 수막의 수온 등을 계측하였고, 단위 피복면적당 수막에 의한 총 공급열량, 열관류율, 관류열량, 온실 내부로 전달되는 열량비율 변화를 비교·분석하였다. 1중과 2중사이의 기온은 외부기온보다는 수막유량과 공급수온에 따라 결정되는 것으로 나타났다. 수막유량이 증가할수록, 공급수온이 높을수록 수막과 2중 하우스 내부와의 열관류율(UW-IN)은 유의하게 증가하는 경향을 보였다. 그러나 수막유량과 공급수온이 일정조건(수 막유량 0.00266L·m-2·s-1, 공급수온 19.8oC) 이상에서는 UW-IN 값이 10W·m-2·oC-1 정도로 수렴되는 것으로 나타났다. 수막과 1·2중 공기 사이의 열관류율(UW-B)의 경우에도 수막유량 및 공급수온에 따라 증가하는 경향을 보였으나, 경향성은 상대적으로 작은 것으로 분석되었다. UW-B는 연구자에 따라 전체적으로 큰 차이를 보이고 있으며, 본 연구에서는 3.27~4.44W·m-2·oC-1의 범위를 보였다. 수막에 의한 총 공급열량(QW)과 온실 내외부로 전달 되는 관류열량(QW-IN, QW-B)의 경우, QW 값이 QW-IN과 QW-B의 합과 매우 유사하게 일치하고 있어 본 연구에서 제시한 결과가 신뢰성이 있음을 확인할 수 있었다. 수막에 의해 내부공기를 가열하는데 사용되는 열량은 최대 57% 수준으로 분석되었고, 우리나라 수막재배온실의 경우 약 22~28% 수준으로 판단된다. 본 연구는 농업인이 실제 사용하는 수막온실과 가장 유사한 조건에서 수막에 의한 온도변화, 열관류율과 관류열량을 계량화함으로써 향후 경제적인 수막온실 설계 시 활용할 수 있을 것으로 기대된다.
        4,000원
        27.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Flexible two-phase thermosyphons are devices that can transfer large amounts of heat flux with boiling and condensation of working fluid resulting from small temperature differences. A flexible two-phase thermosyphon consists of a evaporator, an insulation unit, and a condenser. The working fluid inside the evaporator is evaporated by heating the evaporator in the lower part of the flexible two-phase thermosyphon and the evaporated steam rises to the condenser in the upper part to transfer heat in response to the cooling fluid outside the tube. The resultant condensed working fluid flows downward along the inside surface of the tube due to gravity. These processes form a cycle. Using R134a refrigerant as the working fluid of a loop type flexible two-phase thermosyphon heat exchanger, an experiment was conducted to analyse changes in boiling heat transfer performances according to differences in the temperature of the oil for heating of the evaporator, the temperature variations of the refrigerant, and the mass flows. According to the results of the present study, the circulation rate of the refrigerant increased and the pressure in the evaporator also increased proportionally as the temperature of the oil in the evaporator increased. In addition, the heat transfer rate of the boiler increased as the temperature of the oil in the evaporator increased.
        4,000원
        28.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was investigated heat flow and heat transfer coefficient characteristics of around tube when changing the tube arrangement type and heat transfer area. When  ≒1∼4, convective heat transfer coefficient of staggered and aligned arrangement was increased. Growth rate of the heat transfer coefficient becomes smaller in case of ≒5∼8 because a change in the turbulence was very small. At the staggered arrangement, all tubes were always arranged in front of the open passage between the back of the tube. Then, the entire surface area of the tube was exposed to the main flow. Thus growth rate of heat transfer coefficient appear larger than aligned arrangement.
        4,000원
        29.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Jet impingement heat transfer is a very effective technique for exchanging high heat fluxs between a heated plate and a fluid. The purpose of this study is to investigate the heat transfer characteristics of a rectangular free water jet normally or obliquely impinging onto a flat plate. The water jet issued from a rectangular slot nozzle with a cross section of 1.5mm⨉40mm. The mean velocities of nozzle exit were varied from 1.5m/s to 6.1m/s. The Reynolds number range based on the nozzle gap and the mean velocity was 2200∼8800. Various impingement angles between the vertical rectangular water jet and the inclined flat surface were investigated : 90˚, 70˚, 60˚ and 50˚ . The Nusselt number is high at the impingement line, and decreases with departures from it. The stagnation Nusselt numbers were compared to predictions of several correlations proposed by other researchers. The locations of the peak Nusselt numbers do not coincide with the geometric center of the rectangular jet on the surface.
        4,200원
        31.
        2014.02 구독 인증기관 무료, 개인회원 유료
        The heat transfer characteristics of laminar syngas-fuel/air mixture with 10% hydrogen content impinging normally to a flat plate has been conducted experimentally. There were investigated by the effects of impinging distance, Reynolds number and equivalence ratio as major parameters on heat fluxes of stagnation point with the direct photos and data acquisitions from heat flux sensor. There were 3 times of maximum and 2 times minimum heat flux of stagnation point with respect to the impinging distance for the investigation of Reynolds number and equivalence ratio effect. The heat transfer characteristics between the stagnation and wall jet region in radial heat flux profiles was also investigated by the heat flux profiles.
        4,000원
        32.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, the flow and forced convective heat transfer analysis of HEV battery pack were investigated numerically regarding the different shapes of the inlet, outlet, and battery case. The velocity ,pressure, and temperature distribution of the fluid at the inlet part of the battery module were numerically calculated for the optimum design of the battery pack for three different inlet shapes of the battery module. In addition, the local battery temperature for height and width and convective heat transfer coefficient of the air inside the battery pack were numerically obtained. Ultimately, the circle shape of the inlet and outlet were determined for the energy-effective shape of the battery pack.
        4,000원
        33.
        2013.02 구독 인증기관 무료, 개인회원 유료
        The heat generated in contact type braking system can cause an unacceptable braking performance. Thermal behavior of ventilated disk brake system is presented in this paper. The temperature and velocity fields of 3-D unsteady simulated model are obtained using a software package "FLUENT". The numerical results show that there exits a temperature nonuniformity between the disk faces contacting with pads. The conduction rate through the disk and pad is calculated and the effect of material conductivity is also investigated.
        4,000원
        34.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Experimental measurements of flame shape and heat transfer characteristics were performed for impinged inverse diffusion flame(IDF) using propane as a fuel. The purpose of this study is to identify the favorable co-axial inverse diffusion flame structure for impingement heating. The flame consisted of an entrainment zone and mixing and combustion zone. The heat flux which represents heat transfer rate is measured by using a heat flux sensor that is located at the center of the impingement plate. The inverse diffusion flame structure has been classified into six modes. In these modes, several favorable flames for impingement heating were identified. In this study, the parameters are overall equivalent ratio(Φ), nozzle to impingement plate distance(h/d), vertical distance from the stagnation point and Reynolds number(Re) of combustion air.
        4,000원
        35.
        2009.12 구독 인증기관 무료, 개인회원 유료
        This study aims to evaluate the heat transfer characteristics and energy consumption in the wet and dry ondol systems. Conditions of the continued heating mode set the room temperature at 20℃ and hot water supply temperature at 60℃ and 70℃ for 3 days. The scheduled heating mode operates heating at 6~9am (room temperature at 20℃), suspends heating at 9~18pm (leaving mode), and runs heating at 1 8~24am (room temperature at 20℃) and 24~6am (room temperature at 17℃) for 2 days. The results from the continued heating mode in the dry/wet ondol systems confirmed that the dry and wet systems had the same average indoor temperature (18.9℃) and similar energy consumption. In addition, the results from the scheduled heating mode in the dry/wet ondol systems confirmed that the dry ondol system had lower energy consumption than the wet ondol system. Therefore, the scheduled heating mode in the dry ondol system is expected to reduce energy consumption.
        4,000원
        36.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The researcher inquired drying characteristics by reflecter shape. Near infrared ray (NIR) is very useful in various drying field. The researcher compared and investigated, temperature about reflecter's shape with numerical analysis method and experimental method. The researcher also investigated about distance between a lamp and a drying target plate using experimental method. As far as a experimental method is concerned, the researcher used the thermal image processing system for changing distance between a lamp and a drying target plate into H=500mm, 600mm and 700mm. Also presented experimental results are compared about thermal image for temperature distribution at each cases. As a result, the researcher has come to the H=700mm about best result in this study.
        4,000원
        37.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is experimentally to analyze the heat transfer characteristics and photographic observation of bubble generation in saturated nucleate pool boiling. The photographs were taken of water boiling from heated nickel wires. The attempts is made to explain the different nucleate boiling of water. Some of the bubbles photographed were very close to the spherical shape, while others were close to the hemispherical. Also, a number of bubble had intermediate shapes that were called oblate bubbles. At least, heat transfer regions of three and possibly four were found to exist in nucleate boiling depended upon the mode of vapor generation. The vapor structure on the surface progressed through a sequence of first discrete bubbles, then vapor columns and vapor mushrooms, and finally vapor paths, as the surface temperature was increased. These individual vapor structures or combinations of them determine the mechanism of heat transfer in the four nucleate boiling regions.
        4,000원
        1 2 3