검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 220

        101.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effects of annealing environment for the densification and purification properties of pure titanium coating layer manufactured by cold spraying. The annealing was conducted at /1 h and three kinds of environments of vacuum, Ar gas, and mixture gas were controlled. Cold sprayed Ti coating layer (as sprayed) represented 6.7% of porosity and 228 HV of hardness, showing elongated particle shapes (severe plastic deformation) perpendicular to injection direction. Regardless of gas environments, all thermally heat treated coating layers consisted of pure -Ti and minimal oxide. Vacuum environment during heat treatment represented superior densification properties (3.8% porosity, 156.7 HV) to those of Ar gas (5.3%, 144.5 HV) and mixture gas (5.5%, 153.1 HV). From the results of phase analysis (XRD, EPMA, SEM, EDS), it was found that the vacuum environment during heat treatment could be effective for reducing oxide contents (purification) in the Ti coating layer. The characteristic of microstructural evolution with heat treatment was found to be different at three different gas environments. The controlling method for improving densification and purification in the cold sprayed Ti coating material was also discussed.
        4,000원
        102.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, mechanical tests and microstructural analyses including TEM analyses with EDX of precipitates in modified 9Cr-1Mo steel were carried out to determine the cause of embrittlement observed after heat-treatment, which limits the usage of the alloy for power plants. Mod. 9Cr-1Mo steel specimens at austenite temperature were quenched to the molten salt baths at 760˚C and 700˚C, in which the specimens were kept for 10 min ~ 10 hr with subsequent air-cooling. Impact tests showed that the impact value dropped abruptly when the specimens were kept longer than 30 min at ~760˚C reaching to minima in about 1 hr, and then increasing at further retention. The tensile strength of the specimens reached the minimum value without much change afterward, whereas the values of elongation showed the same trend as that of the impact value. The isothermally heat-treated steel at 700˚C also showed a minimum impact value in about 1 hr. These results suggest that the isothermal heattreatment at 760 and 700˚C for about 1 hr induces temporal embrittlement in Mod. 9Cr-1Mo steel. The microstructural examination of all the specimens with extraction replica of the carbides revealed that the specimens with temporal embrittlement had Cr2C, indicating that the cause of the embrittlement was the precipitation of the Cr2C. In addition, TEM/EDX results showed that the Fe/Cr ratio was 0.033 to 0.055 for Cr2C, whereas it was 0.48 to 0.75 for Cr23C6, making the distinction of the Cr2C and Cr23C6 possible even without direct electron diffraction analyses.
        4,000원
        103.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this present work, the effect of additional heat-treatment (AHT) in the range from 1800℃ to 2400℃ on the chemical composition, morphology, microstructure, tensile properties, electrical resistivity, and thermal stability of commercial polyacrylonitrile (PAN)-based carbon fibers was explored by means of elemental analysis, electron microscopy, X-ray diffraction analysis, single fiber tensile testing, two-probe electrical resistivity testing, and thermogravimetric analysis (TGA). The characterization results were in agreement with each other. The results clearly demonstrated that AHTs up to 2400℃ played a significant role in further contributing not only to the enhancement of carbon content, fiber morphology, and tensile modulus, but also to the reduction of fiber diameter, inter-graphene layer distance, and electrical resistivity of "as-received" carbon fibers without AHT. The present study suggests that key properties of commercial PAN-based carbon fibers of an intermediate grade can be further improved by proprietarily adding heat-treatment without applying tension in a batch process.
        4,000원
        104.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study attempted to manufacture a Cu-15 at.%Ga coating layer via the cold spray process and investigated the effect of heat treatment environment on the properties of cold sprayed coating material. Three kinds of heat treatment environments, +argon, pure argon, and vacuum were used in this study. Annealing treatments were conducted at /1 hr. With the cold sprayed coating layer, pure -Cu and small amounts of were detected in the XRD, EDS, EPMA analyses. Porosity significantly decreased and hardness also decreased with increasing annealing temperature. The inhomogeneous dendritic microstructure of cold sprayed coating material changed to the homogeneous and dense one (microstructural evolution) with annealing heat treatment. Oxides near the interface of particles could be reduced by heat treatment especially in vacuum and argon environments. Vacuum environment during heat treatment was suggested to be most effective one to improve the densification and purification properties of cold sprayed Cu-15 at.%Ga coating material.
        4,000원
        105.
        2011.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The CdS thin film used as a window layer in the CdTe thin film solar cell transports photo-generated electrons to the front contact and forms a p-n junction with the CdTe layer. This is why the electrical, optical, and surface properties of the CdS thin film influence the efficiency of the CdTe thin film solar cell. When CdTe thin film solar cells are fabricated, a heat treatment is done to improve the qualities of the CdS thin films. Of the many types of heat treatments, the CdCl2 heat treatment is most widely used because the grain size in CdS thin films increases and interdiffusion between the CdS and the CdTe layer is prevented by the heat treatment. To investigate the changes in the electrical, optical, and surface properties and the crystallinity of the CdS thin films due to heat treatment, CdS thin films were deposited on FTO/glass substrates by the rf magnetron sputtering technique, and then a CdCl2 heat treatment was carried out. After the CdCl2 heat treatment, the clustershaped grains in the CdS thin film increased in size and their boundaries became faint. XRD results show that the crystallinity improved and the crystalline size increased from 15 to 42 nm. The resistivity of the CdS single layer decreased from 3.87 to 0.26 Ωcm, and the transmittance in the visible region increased from 64% to 74%.
        4,000원
        106.
        2011.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Currently, there are two main issues regarding the development of core technologies in the automotive industry: the development of environmentally friendly vehicles and securing a high level of safety in the event of an accident. As part of the efforts to address these issues, research into alternative materials and new car body manufacturing and assembly technologies is necessary, and this has been carried out mainly by the automotive industries. Large press molds for producing car body parts are made of cast iron. With the increase of automobile production and various changes of design, the press forming process of car body parts has become more difficult. In the case of large press molds, high hardness and abrasive resistance are needed. To overcome these problems, we attempted to develop a combined heat treatment process consisting of local laser heat treatment followed by plasma nitriding, and evaluated the characteristics of the proposed heat treatment method. From the results of the experiments, it has been shown that the maximum surface hardness is 864 Hv by the laser heat treatment, 953 Hv by the plasma nitriding, and 1,094 Hv by the combined heat treatment. It is anticipated that the suggested combined heat treatment can be used to evaluate the durability of press mold.
        4,000원
        107.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate new applications for illite as an additive for carbon-based composites, the composites were prepared with and without illite at different heat-treatment temperatures. The effects of the heat-treatment temperature on the chemical structure, microstructure, and thermal oxidation properties of the resulting composites were studied. As the heat-treatment temperature was increased, silicon carbide SiC formation via carbothermal reduction increased until all the added illite was consumed in the case of the samples heat-treated at 2,300℃. This is attributed to the intimate contact between the SiO2 in the illite and the phenol carbon precursor or the carbon fibers of the preform. Among composites prepared at all temperatures, those with illite addition exhibited fewer pores, voids, and interfacial cracks, resulting in larger bulk densities and lower porosities. A delay of oxidation was not observed in the illite-containing composites prepared at 2,300℃, suggesting that the illite itself absorbed energy for exfoliation or other physical changes. Therefore, if the illite-containing C/C composites can reach a density generally comparable to that of other C/C composites, illite may find application as a filler for C/C composites. However, in this study, the illite-containing C/C composites exhibited low density, even when prepared at a high heat-treatment temperature of 2300℃, although the thermal oxidation of the resulting composites was improved.
        4,000원
        108.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about 880-890˚C with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a 400-450˚C tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of 350-400˚C. In the condition of quenching at 890˚C and tempering at 350˚C, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill 350˚C and dropped sharply above 400˚C regardless of the quenching temperature.
        4,000원
        109.
        2011.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the heat flow of the plant scale aluminum extrusion process was investigated to establish optimum continuous heat treatment conditions. During the extrusion of 6061 aluminum alloy, processing parameters such as the extrusion pressure, speed and temperature histories of billets were logged as a function of time. The surface temperature of the billets increased at constant ram speed, while it decreased with decreases of the ram speed. In order to maintain the billet temperature within a solutionizing temperature range prior to the succeeding water quenching step, the ram speed or the temperature of the blower should be controlled. The temperature histories of the billets during the extrusion and hot air blowing processes were successfully simulated by using the velocity boundary model in ANSYS CFX. The methodology to design an optimum process by using a commercial simulation program is described in this study on the basis of the metallurgical validation results of the microstructural observation of the extrudates. The developed model allowed the advantages of taking into account the motion of the extrudate coupled with the temperature change based on empirical data. Calculations were made for the extrudate passing through the isothermal chamber maintained at appropriate temperature. It was confirmed that the continuous heat treatment system is beneficial to the productivity enhancement of the commercial aluminum extrusion industry.
        4,000원
        110.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In preparation of silica aerogel-based hybrid coating materials, the combination of hydrophobic aerogel with organic polar binder material is shown to be very limited due to dissimilar surface property between two materials. Accordingly, the surface modification of the aerogel would be required to obtain compatibilized hybrid coating sols with homogeneous dispersion. In this study, the surface of silica aerogel particles was modified by using both surfactant adsorption and heat treatment methods. Four types of surfactants with different molecular weights and HLB values were used to examine the effect of chain length and hydrophilicity. The surface property of the modified aerogel was evaluated in terms of visible observation for aerogel dispersion in water, water contact angle measurement, and FT-IR analysis. In surface modification using surfactants, the effects of surfactant type and content, and mixing time as process parameter on the degree of hydrophilicity for the modified aerogel. In addition, the temperature condition in modification process via heat treatment was revealed to be significant factor to prepare aerogel with highly hydrophilic property.
        4,000원
        111.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Propellant waste was impregnated on the surface of activated carbon fiber and heat-treated at different temperature to introduce newly developed functional groups on the ACF surface. Functional groups of nitrogen and oxygen such as pyridine, pyridone, pyrrol, lacton and carboxyl were newly introduced on the surface of modified activated carbon fiber. The porosity, specific surface area, and morphology of those modified ACFs were changed as increasing the heat-treated temperature from 200 to 500℃. The optimum heat-treatment temperature was suggested to 500℃, because lower temperature given rise to the decrease of specific surface area and higher temperature resulted in the decrease of weight loss. Propellant waste can be used as an useful surface modifier to porous carbons.
        4,000원
        112.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, graphite nanofibers (GNFs) were prepared by ammonia and heat treatment at temperatures up to 1000℃ to improve its CO2 adsorption capacity. The effects of the heat treatment on the textural properties and surface chemistry of the GNFs were investigated by N2 adsorption isotherms, XRD, and elemental analysis. We found that the chemical properties of GNFs were significantly changed after the ammonia treatment. Mainly amine groups were formed on the GNF surfaces such as lactam groups, pyrrole and pyridines. The GNFs treated at 500℃ showed highest CO2 adsorption capacity of 26.9 mg/g at 273 K in this system.
        3,000원
        113.
        2010.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a convergent heat treatment was performed in certain temperature regions in order to control the microstructures of Nd-rich phases and to reduce thermal stress on grain boundaries which could be caused during expansion and shrinkage of Nd-rich and phases. The difference of thermal expansion coefficient between and Nd-rich phases is the mechanism for convergent heat treatment. The Nd-rich phases which were located in junctions could penetrate into the grain boundaries between phases due to the difference of thermal expansion coefficient. Through the convergent heat treatment, the microcracks that were observed in cyclic heat treatment were not observed and coercivity was increased to 34.05 kOe at 8 cycles.
        4,000원
        114.
        2009.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        추출방법에 따른 기능성 성분을 분석한 결과 양파 착즙액의 경우 100oC에서 열수 추출한 시료에서 총 phenol, flavonoid, quercetin의 함량이 가장 높게 검출되었으며, 에탄올 추출 시 100oC에서 추출한 시료와 거의 유사한 농도의 기능성 성분이 검출되었다. 양파 추출액의 quercetin 함량은 총 flavonoid의 80-90%로 quercetin이 flavonoid의 대부분을 구성하는 것으로 확인되었다. 양파분말의 경우 착즙액과 비교하여 추출된 flavonoid와 quercetin 함량이 약간 높았지만, thiosulfinate는 약 40% 낮은 농도를 나타내어 동결건조 과정이 황화합물의 손실을 초래하는 것으로 나타났다. 양파 껍질은 육질에 비하여 60배 이상 높은 quercetin을 함유하고 있는 것으로 나타났으나, thiosulfinate는 껍질에서 검출되지 않았다. 양파 추출액의 살균조건에 따른 기능성 성분을 분석한 결과 60, 80, 105, 121oC의 열처리는 살균 전과 비교하여 기능성 성분의 함량에 영향을 미치지 않았다. 양파 추출액의 저장동안 총 phenol, flavonoid, quercetin 함량은 저장기간과 온도에 상관없이 안정적으로 유지되었으나, thiosulfinate는 저장 기간이 길어질수록 감소하였고 25oC에 저장한 경우 4oC에서 보다 급격히 감소하는 경향을 나타냈다.
        4,000원
        115.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The thermal stability and mechanical properties of Nephila clavata and Bassaniana decorata spider silks were measured and compared with those of aramid and polyester fibers. The thermal stability of the spider silk was lower than those of the commercial aramid and polyester fibers. However, the mechanical properties of the spider silk were far superior to that of the polyester fiber. The effect of the water content of the spider silk on its thermal stability and mechanical property was examined by conducting the silk to heat treatment at 100℃ under vacuum for various times. The results indicated that spider silk subjected to heat treatment for 1.5 hr had excellent thermal stability and mechanical property.
        4,000원
        116.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sintered Nd-Fe-B magnets have been widely used due to their excellent magnetic properties, especially for driving motors of hybrid and electric vehicles. The microstructure of Nd-Fe-B magnets strongly affects their magnetic properties, in particular the coercivity. Therefore, a post-sintering process like heat-treatment is required for improving the magnetic properties of Nd-Fe-B sintered magnets. In this study, cyclic heat treatment was performed at temperatures between and up to 16 cycles in order to control microstructures such as size and shape of the Nd-rich phase without grain growth of the phase. The 2 cycles specimen at this temperature range showed more homogeneous microstructure which leads to higher coercivity of 35 kOe than as-sintered one.
        4,000원
        118.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by HNO3 and then heat treated at 800℃ were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.
        4,000원
        120.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oxidation behavior and microstructural characteristics of nano-sized Sn powder were studied. DTA-TG analysis showed that the Sn powder exhibited an endothermic peak at and exothermic peak at with an increase in weight. Based on the phase diagram consideration of Sn-O system and XRD analysis, it was interpreted that the first peak was for the melting of Sn powder and the second peak resulted from the formation of phase. Microstructural observation revealed that the powder, heated to under air atmosphere, consisted of agglomerates with large particle size due to the melting of Sn powder during heat treatment. Finally, fine SnO2 powders with an average size of 50nm can be fabricated by controlled heat treatment and ultrasonic milling process
        4,000원