검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Evaluation of the durability and stability of materials used in power plants is of great importance because parts or components for turbines, heat exchangers and compressors are often exposed to extreme environments such as high temperature and pressure. In this work, high-temperature corrosion behavior of 316 L stainless steel in a carbon dioxide environment was studied to examine the applicability of a material for a supercritical carbon dioxide Brayton cycle as the next generation power plant system. The specimens were exposed in a high-purity carbon dioxide environment at temperatures ranging from 500 to 800 oC during 1000 hours. The features of the corroded products were examined by optical microscope and scanning electron microscope, and the chemical compound was determined by x-ray photoelectron spectroscopy. The results show that while the 316 L stainless steel had good corrosion resistance in the range of 500-700 oC in the carbon dioxide environment, the corrosion resistance at 800 oC was very poor due to chipping the corroded products off, which resulted in a considerable loss in weight.
        4,000원
        2.
        2006.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The likelihood of failure by the corrosion of high temperature H2S/H2, which affect to a risk of facilities, was analyzed through the risk based-inspection using API-581 BRD. We found that the corrosion rate was increased as temperature and H2S concentration were increased. Also, the technical module subfactor(TMSF) was increased as an used you increased, material thickness decreased, inspection number decreased, and inspection effectiveness increased. In these conditions, the maximum value of TMSF was not varied, but the TMSF was sensitively varied at low temperature for high concentration of H2S.
        4,000원
        3.
        2005.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The likelihood of failure for the thinning of high temperature sulfide and naphthenic acid corrosion, which affect to a risk of facilities, was analyzed through the risk based inspection using API-581 BRD. We found that the corrosion rate was increased with increasing temperature and total acid number(TAN). And maximum value of the technical module subfactor(TMSF) was not varied with operating condition, but the TMSF was sensitively changed at the range of low temperature, low flow rate, and high TAN. Also, the TMSF was increased as an used year and inspection effectiveness increased, but it was increased as thickness, inspection number, and over design decreased.
        4,000원
        7.
        1996.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The structure of the scale formed on the surface of Fe - Cr - X alloys exposed to 1143K high sulfidation(Ps2 = 1.11×10-7 atm, Po2 = 3.11×10-20 atm) or sulfidation/oxidation((Ps2= 1.06×10-7 atm, (Po2 = 3.11×10-18 atm) environment has been observed and analysed using XRD, SEM/EDS. To investigate the possibility of protective film formed on the surface of the alloys, Aluminium, Nickel were selected as alloying elements. Thermodynamic phase stability diagram was used to predict the reaction path of scale formed on Fe - Cr - X alloys. Parabolic rate constant(Kp) value with 6wt% Al in Fe - 25Cr alloy decreased significantly compared with the Fe - 25Cr alloy without 6wt% Al. Since thin layer of defect free sulfide film, (Al, Cr)Sx, was formed at the alloy/scale interface. Fe - rich sulfide scale at outer layer and Cr - rich sulfide scale containing porosity at inner layer of Fe - 25Cr alloy have been observed. The reaction path for these scales could be predicted by the thermodynamic stability diagram.
        4,000원
        8.
        2017.07 KCI 등재 서비스 종료(열람 제한)
        There increasing demand for technologies that are capable of producing heat and electric energy by burning fuels such as solid refuse fuel (SRF) and biomass to mitigate the effects of greenhouse gas emissions from fossil fuels and global warming in the field of thermal power generation. In particular, conversion of SRF into energy (Waste to Energy) is the promising technology with high economic and social benefits. The high temperature corrosion of the heat exchange tube is the most important factor that affects the economic deterioration of a circulating fluidized bed boiler using solid refuse fuel, due to operating time decrease and the periodic shutdown during plant operation. The purpose of this study was to examine the high temperature corrosion characteristics of boiler superheater tubes. The change of corrosion characteristics according to the temperature and alkali chloride salt can be investigated by analyzing the morphology of the surface and the microstructure of specimen cross-section and examining the changes in the physical and chemical properties. The degree of corrosion increased as the temperature increased and the weight of the alkali chloride specimen deposit decreased due to the volatilization of the metal chloride compound above 700°C. Deposits of KCl were found to accelerate corrosion by destroying the oxide layer and forming potassium compounds.
        9.
        2017.05 서비스 종료(열람 제한)
        보일러 관의 부식 현상은 오랫동안 다양한 산업분야 걸쳐 제기되어 오는 주요한 문제 중의 하나이다. 특히, 온도는 보일러 관의 부식 현상을 야기시키는 주요한 영향 인자 중에 하나이다. 하지만, 기존의 보일러 시스템의 경우 장기간의 운전으로 인해 온도에 따른 부식 발현을 면밀히 관찰하기에는 부적합한 부분이 있다. 따라서 우리는 기존의 보일러 설비처럼 보일러 관의 내부와 외부 온도조건을 달리하여 제어할 수 있는 장비를 구축하였다. 이를 통해서 다양한 온도 및 환경조건에서 보일러 관의 고온 부식에 대한 실험을 진행할 수 있었다. 결국 FE-SEM(field emission scanning electron microscope), EDS(energy dispersive spectrometer), XRD(X-ray diffraction)를 통한 분석결과로부터 다각적으로 고온 조건에 인한 부식발생기작에 대해 유추할 수 있었다. 뿐만 아니라 weight loss method를 통해서 고온에 따른 부식으로 인한 보일러 관의 두께 및 무게 감량 결과를 통해서 해당 조건에서의 보일러 관의 수명 또한 예측할 수 있었다.
        10.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        High temperature corrosion is a major issue in waste-to-energy (WTE) facilities because it effects running cost and energy utilization efficiency. Corrosion of heating surfaces in WTE boilers is a complex phenomenon. The purpose of this study was to analyze the high temperature corrosion characteristics of WTE boiler tubes and to determine the influences of high temperature corrosion on heat exchange. Heating surface corrosion samples for this research were obtained from a superheater tube in municipal solid refuse fuel-fired power plant. Surface morphology, microstructure and phase composition were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analysis. The morphology of the heating surface was rough and had porous structures. The chlorine content of the surface was 7.4wt.% and the samples were mainly composed of hematite (Fe2O3) and magnetite (Fe3O4). The thermal conductivity of the corrosion samples was characterized using thermal conductivity measurements and was found to be 2.33 W/mK at 500oC. This result, which is 17 times less than that of boiler tube carbon steel (40.40 W/mK), indicates that corrosion of WTE boiler tubes is closely related to a decrease in boiler heat exchange efficiency.