To compare and evaluate the suitability and comfort levels of the environment on board a stern trawl training ship, KAYA(GT: 1737 tons, Pukyong National University), with the international standardization guide ISO 6954:2000(E), measurements of the hull vibration on accommodation areas and working areas of the training ship from July 8 to July 10, 2008 were completed upon KAYA's linear sea route. The vibrations along the z-axis were measured with the use of a 3-axis vibration level meter, which included a marine vibration card. Results show accelerations of the vibrations on the passenger's accommodation area to be 42.0-115.8(average: 78.0, standard deviation(SD): 21.0) mm/s2, which is largely below the permissible upper limit, but 75 % of the observation points exceeded the permissible lower limit of 71.5 mm/s2, indicating a comfortable environment. The accelerations of the vibration in a frequency of 10-24Hz lowering the visual performance were measured at 2.5-12.0(average: 7.6, SD: 3.1) mm/s2. The crew s accommodation area experienced vibration accelerations of 42.9-82.3(average: 93.1, SD: 53.1) mm/s2, which is generally below the permissible upper limit of 214.0 mm/s2, and 62.5% of the observation points did not exceed the permissible lower limit of 107.0 mm/s2, denoting a level of comfort. The acceleration of the vibration in a frequency of 10-24Hz were 4.7-28.3(average: 12.4, SD: 8.8) mm/s2. On the crew s working area the accelerations were measured at 86.9-153.9(average 119.3, SD 18.0) mm/s2. These values were generally below the permissible upper limit of 286.0 mm/s2 and only 12.5% of the observation points did not exceed the permissible lower limit of 143.0 mm/s2, the level at which a high level of comfort is maintained. The accelerations in frequency of 10-24Hz and 30Hz were 9.1-29.8 (average 13.8, SD= 4.5) mm/s2 and 8.9-13.7 (average 11.8, SD 2.1) mm/s2, respectively. In conclusion the boarding environment of the training ship was good in general although an improvement of the vibration condition partially needed on the crew s accommodation area near the engine room.
This paper describes on the measurement of the deck vibration produced by the main engine vibration of stern trawler MjS SAE-BA-DA (2,275GT, 3,600PS) while the ship is cruising and drifting. The obtained results are as follows; 1. The deck vibration level was the highest point at vertical line which pass main engine and the lowest point at vertical line which pass top bridge while the crusing. 2. The vibration source level of the main engine, screw shaft and screw propeller were respectively 110, 90 and 80% while the crusing. 3. The main deck vibration pressure level at the check points 2, 20, 30, 40, 60, 70, 80, 86m from the bow to stern was respectively 9, 8, 7, 10, 22, 45, 18, 23%. 4. The frequency distributions of the rr.ain engine, screw shaft, screw propeller vibration were from 3 Hz to 10 KHz, predominant frequency was 1 KHz, each vibration accelration the highest level were respectively 1. 3, 0.8, 0.5 mm/s2. 5. The predominant frequency distributions of the main deck, second deck, bridge deck and top bridge deck-s vibration were from 10 to 30 Hz, and each vibration accelration level were respectively 0.7, 0.05, 0.07, 0.04 mm/s2.
이상(以上)과 같은 고제(考祭)을 통(通)하여 다음과 같은 결론(結論)을 얻을수 있었다. 1. 각진동차수별(各振動次數別)로 상부구조물(上部構造物)의 길이 변화(變化)에 대한 고유진동수(固有振動數)의 변화(變化)경향을 알수 있다. 2. 같은 구조물(構造物)이던 홀쭉할수록 고유진동수(固有振動數)가 커지고, 커지는 경향은 고차(高次)일수록 터 커진다. 3. 본고(本槁)에서는 두가지 선형(船型)에만 대하여 전달(傳達) matrix 해석법(解析法)으르 검토 고찰 하였으나 그 계산용량(計算容量)이바른 해석법(解析法)보다 훨씬 적음을 감안할때, 본방법(本方法)에 의하여 여러 선형(船型)에 대한 진동자료(振動資料)를 계통적(系統的)으로 계산(計算)하여 두면 방진(防振)자료에 큰 도움이 될것으로 기대된다.