검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to develop a high-moisture food waste dryer that uses steam as a direct heat source to improve the drying speed. Another objective was to verify its performance through experiments. A dryer with a drying capacity of 10,000 kg/hr, which uses steam from an incineration plant as a drying heat source, was fabricated. The performance and applicability of the dryer were verified through drying experiments, in which the food waste collected from large restaurants near the incineration plant was used as the experimental material. The drying experiment results showed that the input steam temperature increased by 21℃ from approximately 145℃ to 166℃ compared to the case in which drying was performed by converting steam into heated air. The drying speed increased by 1.5 times from approximately 0.63 to 0.94 %/hr, and drying up to approximately 20%(wb) moisture content was possible. The drying energy rate, which represents the ratio of the energy consumed for drying to the input energy, increased by approximately ten times from 7.17% to 70.87%. The total drying time still remained approximately 100 hr due to the re-condensation of moisture. When steam was directly used as a drying heat source to improve the drying speed of food waste containing high moisture, the drying speed, water content after drying, and drying energy rate were clearly improved compared to the case in which steam was converted into heated air for use. Therefore, it was deemed necessary to develop a dryer that directly uses steam from an incineration plant for drying. To shorten the total drying time, it is necessary to develop a device that solves the problem of moisture condensation in the dryer.
        4,000원
        2.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 단순 폐기 되는 농업폐기물(토마토, 고추, 파프리카)을 고형연료로 재활용하기 위한 열 풍건조장치를 개발하고 실험을 통해 그 성능을 확인하고자 하였다. 연구를 위해 건조용량 500 kg/hr인 쓰레기소각장 폐열을 열원으로 사용하는 건조기를 제작하였다. 경상남도 진주시 농산물 시장에서 구입 한 남해산 시금치를 실험원료로 사용하였다. 열교환기에서 스팀 열교환에 의해 가열된 건조공기를 열풍 으로 사용하여 절단 원료 투입량(126, 250, 300 kg), 원료교반여부(수동 교반, 수동 비교반), 건조방식 (건조물 정치, 건조물 이송), 건조시간(0.25, 0.5, 0.6 hr)에 따른 건조특성을 파악하였다. 투입 원료의 함수율은 85.65%로 측정되었으며, 소각장 공급 스팀에 의해 열교환기에서 가열된 건조공기온도는 건조 기에 투입된 실험원료의 퇴적고에 따른 압력저항에 의해 다소 차이를 보였으며 약 108 내지 144℃로 측정되었다. 동일 건조방식, 투입량, 건조시간, 건조공기온도에서 상하층간 원료를 교반하는 하는 경우가 그렇지 않은 경우에 비해 약 2배 정도의 높은 건조속도를 보였다. 각 실험에서 건조용량은 약 500 kg/hr으로 나타났다. 국내 농산물 건조기 157개의 농업실용화재단 검사성적서를 기준으로 투입 에너지에 대한 건조 소요에너지 비를 나타내는 건조효율을 비교한 결과 국내 농산물 건조기 57.76%, 개발 된 농업폐기물 건조기 33.46%로 기존 농산물 건조기에 비해 낮게 나타났다. 개발된 농업폐기물 건조기는 건조시간이 1시간 이내로 건조시간이 짧으며, 건조 중 많은 풍량이 손실되어 건조효율이 저하된 것으로 판단되었다. 소각장 폐열을 직접 건조열원으로 사용하는 경우 건조공기온도는 최저 160℃ 이상으로 예상 되는 바 건조용량이 크게 향상될 것으로 예측된다.
        4,000원
        4.
        2018.06 KCI 등재 서비스 종료(열람 제한)
        Landfill and incineration tax was introduced in 2018 to reduce waste and promote recycling. However, there is a debate about tax rate. An analysis of the external effects of waste-treatment facilities is necessary, but first, an analysis of direct costs (construction, operation) is compulsory and must be conducted precisely. This study analyzed factors that affect operating cost. Ultimately, an estimation of annual operating cost was achieved by applying a multiple regression analysis to the previously-recorded data from 33 incineration facilities and 199 reclamation facilities. The results showed that incineration operating cost is affected by capacity, capacity utilization rate, and use of electricity. Annual landfill amount, area, and leachate treatment affect landfill operating cost, as well. The coefficient of determination is 0.6 or higher. Significance and collinearity between independent variables is at an acceptable level.
        5.
        2017.11 서비스 종료(열람 제한)
        우리나라는 자원이 부족하여 총 공급에너지의 95.8 %를 수입에 의존하고 있어 신재생에너지의 개발과 합리적인 이용방안이 절실하다. 폐기물 에너지는 재생에너지 종류 중 하나로 가정이나 사업장에서 배출되는 폐기물을 열분해를 통해 고형연료, 폐유 정제유, 플라스틱 열분해 연료유, 폐기물 소각열 등의 에너지를 생산할 수 있어 활용가치가 매우 높다. 그 중 고형연료는 「자원의 절약과 재활용촉진에 관한 법률」에 따라 인정된 생활폐기물(음식물류 제외), 폐합성수지, 폐지 등 가연성물질만을 선별・분리하여 제조한 연료로 현재 SRF(Solid Refuse Fuels) 와 BioSRF(Biomass Solid Refuse fuel)로 관리되고 있다. 폐기물 연료는 화석연료뿐만 아니라 바이오매스도 포함하고 있기 때문에 부분적인 이산화탄소 중립연료로 간주될 수 있다. 특히 혼합된 폐기물연료를 소각하는 곳에서 배출되는 가스 중에는 바이오매스 기원물질을 제외 할 때에 비로소 순 온실가스 배출량을 산정할 수 있다. 따라서 본 연구에서는 폐기물에너지 중 가연성폐기물을 원료로 한 고형연료제품 종류별 사용시설에서 배출되는 가스를 포집하여 CO2 중의 생물학적 기원물질의 바이오매스를 14C 방법으로 분석하였다. 또한 고형연료에 대한 분석을 SDM(Selective Dissolution Method)방법과 14C 방법으로 분석하여 비교하였고 배출가스에서의 측정․분석을 수행함으로서 폐기물에너지 사용시설에 적용 가능한 가장 적합한 측정․분석방법을 고찰해보았다.
        6.
        2017.11 서비스 종료(열람 제한)
        우리나라의 폐기물 정책은 안정적 처리에서 자원순환으로의 변화를 추구함으로 선진화 기반을 마련하고 있다. 「자원순환기본법」에서는 자원순환사회로의 전환을 위한 기본사항들을 규정함으로써 물질재활용 뿐만 아니라 에너지재활용을 극대화하기 위한 정책을 제시하고 있다. 이처럼 폐기물을 처분 대상 물질이 아닌 순환자원으로 활용함으로써 천연 자원과 에너지 소비의 절감 및 온실가스 배출량 감축 등 국가차원의 정책 목표를 달성하기 위한 노력이 이루어지고 있다. 소각처리는 폐기물 적정처분과 폐기물에너지를 열원 또는 전력으로 회수할 수 있는 중요한 역할을 담당하고 있으며, 소각시설에서의 에너지 회수효율은 국내 폐자원 에너지 활용 수준 파악과 개선방안 마련을 위한 척도 및 기초자료로 활용되고 있다. 최근 환경부에서는 소각시설에서의 에너지 회수효율 산정방법을 개정하였으며, 산정 방법 및 결과의 객관성과 타당성을 확보하고자 하였다. 개정된 산정방법에서는 소각시설에서 생산된 에너지 중 실제 유효하게 사용된 에너지만을 포함하도록 제시하고 있으며, 각 산정인자에 적용되는 데이터는 계측기기를 통한 객관적인 실측 자료를 적용하도록 규정하고 있다. 본 연구에서는 국내의 열분해・고온용융 소각시설을 대상으로 저위발열량 및 에너지 회수효율을 산정하였으며 잠재적 활용가능 에너지량을 파악하였다. 대상 시설은 총 7개소로 에너지 회수효율 산정결과 평균 약 40.5%의 결과를 나타냈으며, 투입에너지의 약 34.2%가 에너지 가용잠재량으로 파악되었다. 가용잠재량은 생산된 에너지 중 실제 사용되지 못하고 버려지는 에너지량으로 판단할 수 있으며, 외부 수요처 확대 및 소내 열에너지 공급을 통하여 에너지 회수효율을 증가시킬 수 있는 잠재량을 의미한다. 아울러 열분해・고온용융 소각방식은 연료를 생성하고 처리잔재물을 용융시킴으로써 다이옥신 등의 유해물질을 파괴하는 환경적으로 유리한 장점을 가진 방식이다. 향후 이와 같은 열분해・고온용융 소각방식의 친환경적 장점 등이 반영된 에너지 회수효율 세부 산정방법의 도출이 필요할 것으로 판단된다. 본 연구에서는 실질적인 소각열 에너지 유효 사용량에 대한 정량적 분석・평가를 수행하였으며, 이러한 측면에서 본 연구의 결과는 향후 국가 수준의 에너지 회수효율 증진 방안 마련 및 기술개발 등을 위한 기초자료로 활용될 수 있을 것으로 판단된다.
        7.
        2017.05 서비스 종료(열람 제한)
        2016년 제정된 「자원순환기본법」에서는 폐기물의 발생을 최대한 억제하고 발생된 폐기물을 순환이용 및 적정 처분하도록 하며, 자원순환사회로의 전환을 위한 기본적인 사항들을 규정하고 있다. 이에 따라 물질재활용 뿐만 아니라 에너지재활용을 극대화하기 위한 정책의 필요성이 부각되고 있으며, 폐기물 적정처리 및 에너지자원의 재활용 측면에서 소각처리 및 소각열 회수의 중요성이 더욱 대두되고 있다. 그러나 기존의 소각시설 에너지회수효율 산정 방법은 유효하게 사용된 에너지가 아닌 생산에너지를 기준으로 산정함으로써 에너지 회수율 증진을 위한 제도 도입 취지와 목적 구현에 한계를 나타냈다. 이에, 개정된 에너지 회수효율 산정방법에서는 에너지 회수를 위한 기술력 향상 및 회수 에너지 활용도 증진을 위하여 생산된 에너지 중 유효 사용량을 기준으로 산정하도록 제시하고 있다. 또한 에너지 회수효율 및 폐기물 저위발열량 산정을 위한 모든 인자를 계측장비를 통한 계측 데이터 및 현장 측정・분석 결과를 적용하도록 하여 데이터 및 산정 결과의 신뢰성과 객관성을 확보하도록 하였다. 이에, 본 연구에서는 개정된 에너지 회수효율 산정방법을 바탕으로 국내 사업장폐기물 소각시설에서의 폐기물 저위발열량과 에너지 회수효율을 산정하였다. 대상시설은 스토커소각로 5기, 로터리킬른-스토커 병합식 소각로 1기, 로터리킬른 소각로 2기, 유동층 소각로 2기로 선정하였으며 산정 인자는 업체 내 실제 계측기기 측정값과 현장 측정・분석 결과 값을 적용하였다. 폐기물 저위발열량 산정결과 평균 약 3,350.5kcal/kg의 저위발열량을 나타냈으며, 에너지 회수효율 산정결과 에너지 생산량 기준 평균 약 58.6%, 에너지 사용량 기준 평균 약 49.0%로 산정되었다. 에너지 유효 사용량 기준과 생산량 기준의 에너지 회수효율 산정 결과는 약 10%의 차이를 나타냈으며, 이는 외부 공급 및 공정 내유효 사용 등을 통하여 잠재적으로 활용 가능한 양으로 판단된다. 아울러 소각시설에서는 보다 높은 에너지 회수효율 제고를 위하여 안정적 운영・관리, 소내 사용 에너지 절감, 터빈 발전 방식의 개선 등 다양한 에너지 회수 방안을 강구할 필요가 있을 것으로 판단된다.
        8.
        2017.05 서비스 종료(열람 제한)
        우리나라는 2030년까지 모든 경제분야에 걸쳐 온실가스 배출을 약 37% 감축할 계획을 UNFCCC에 제출하였으며 이에 따라 보다 정확한 온실가스 배출량을 산정하는 것이 중요하다. 국내 발생되는 폐기물의 매립 억제정책으로 인해 폐기물의 재활용율은 향상되고 있지만 소각비율 또한 증가될 수 있다. 따라서 소각시설에서 배출되는 가스물질의 안정적인 관리가 요구되는 실정이다. 본 연구에서는 국내 생활폐기물 소각시설 3개소(4호기) 및 사업장폐기물 소각시설 6개소(8호기)를 대상으로 연소 후 최종 배출되는 가스성분을 분석・포집하였다. 가스상 물질을 안정적으로 포집하기 위하여 가스샘플링장치를 설계・제작하여 적용하였으며, 보다 신뢰성 있는 시료채취를 위하여 3시간, 6시간, 24시간 단위로 각각 포집하여 결과값을 비교하였다. 분석대상 물질은 CO, NOx, SOx 그리고 CO2 였으며 포집한 기체시료 중 14C 분석을 통해 바이오매스량을 구하였다. 명확한 바이오매스량을 분석하기 위하여 탄소동위원소를 이용한 가속기 질량분석기(Accelerator Mass Spectrometry)를 이용하였으며 바이오매스량을 제외한 총 온실가스배출량을 구하였다.
        9.
        2016.11 서비스 종료(열람 제한)
        최근 급속한 경제 성장과 소비 수준의 상승으로 폐기물 배출량이 급격히 증가했고, 질적으로도 다양화 되고 있다. 우리나라 폐기물 처리정책의 주요내용은 자원을 효율적으로 이용함으로써 자연으로부터의 자원채취를 최소화함과 동시에 자연으로 되돌려지는 폐기물을 최소화함으로써 자연환경을 보호하고 사람의 건강을 보존하는 것이다. 선․후진국을 막론하고 폐기물관리정책의 변화과정은 비슷하다. 이러한 폐기물의 적정처리와 국가 에너지자원의 활용측면에 있어서 매우 중요한 역할을 담당하고 있는 소각시설은 현재 정부가 추진 중에 있는 「자원순환사회전환촉진법」 제정에 따라 적지 않은 변화가 있을 것으로 판단된다. 「자원순환사회전환촉진법」은 자원 및 에너지 소비량의 증가에 따라 계속적으로 폐기물 발생량이 증가하고 있는 국내의 사회적 구조를 고려할 때 폐기물의 발생억제 및 순환이용 촉진 등 자원순환사회 실현을 위한 기반 마련을 위하여 반드시 필요한 제도임에 틀림없다. 자원순환 성과관리제를 통하여 검토되고 있는 폐기물처분부담금(소각 또는 매립)은 에너지를 회수하지 않는 단순 소각시설의 경우 재활용비용에 버금가는 소각세를 부과한다. 그러나 일정기준 이상 에너지를 회수하여 사용하는 소각시설은 폐기물처분부담금의 감면혜택이 부여됨으로써 폐기물로부터 에너지를 회수하는 에너지회수시설과 단순 소각시설의 차별화가 뚜렷이 구분될 것으로 판단된다. 이에 본 연구에서는 생활폐기물 소각처리 시설(2개소, 3호기)을 대상으로 2015년 「폐기물관리법」 시행규칙 제3조제2항에 따른 “폐자원에너지 회수・사용률 산정방법”에 따라 에너지회수율을 산정하였다. 각각의 저위발열량 및 에너지회수・사용률 산정인자(Ep, Ew, Ei, Ef)는 3개월 동안의 계측기 측정값과 현장측정(배출가스 조성, 방열손실, 바닥재 보유열 등)결과를 바탕으로 산출하였다. 폐자원에너지 회수・사용률 산정결과로는 A시설(1호기・2호기)의 경우 생산량 기준 98.6 %, 사용량 기준 26.9 %로 산정되었다. B시설(1호기)에서는 생산량 기준 99.0 %, 사용량 기준 81.9 %로서 생산량 및 사용량 모두 높은 비율을 나타났다. 반면, A시설에서는 생산량 대비 사용량 기준 27.3 %로서 낮은 유효사용률을 나타내었으며, 유효사용률을 높이기 위해서는 다양한 방안(소내 소비감소, 소각시설의 효율적 가동, 폐열보일러의 효율 향상, 안정적인 수요처 확보 등)을 강구할 필요가 있을 것으로 판단된다.
        10.
        2016.11 서비스 종료(열람 제한)
        우리나라는 2030년 까지 모든 경제분야에 걸쳐 온실가스 배출을 약 37% 감축할 계획을 UNFCCC에 제출하였다. 이에 따라 온실가스 감축목표를 설정하고 부문별・업종별 배출권 할당량을 결정하고 있다. 따라서 보다 정확한 온실가스 배출량을 산정하는 것이 중요하며 현재는 배출활동별 온실가스 배출량 세부산정방법과 기준을 Tier 1, 2, 3, 4로 마련하여 관리하고 있다. 활동자료와 배출계수로 계산하는 Tier 1~3 기준에는 화석탄소함량(FCF)을 적용하여 폐기물에 포함된 바이오매스의 비율이 제외될 수 있는 반면, 소각시설에서 발생하는 배출가스 중의 온실가스를 직접적으로 측정하는 Tier 4(연속측정법)에서는 총 CO2만 측정 가능하기 때문에 온실가스 중의 바이오매스량을 제외하기 위해서는 화석연료 기원물질에 의한 배출량과 바이오매스 기원물질에 의한 배출량 구분이 필수적이다. 따라서 본 연구에서는 생활폐기물 소각시설과 사업장폐기물 소각시설 각각에서 연소 후 배출되는 가스를 가스샘플링장치를 이용하여 포집하였으며, 포집한 가스성분과 CO2 중의 바이오매스 기원물질량을 확인하였다. 기체시료 중의 바이오매스량을 측정분석하기 위해서 탄소동위원소를 이용한 가속기 질량분석기(Accelerator Mass Spectrometry)를 이용하였으며 보다 명확한 온실가스배출량 산정을 위한 기초자료로 활용하고자 한다.
        11.
        2016.11 서비스 종료(열람 제한)
        현재 국내 폐기물은 발생억제(Reduce), 재이용(Reuse), 재활용(Recycle)의 3R 정책을 바탕으로 발생량 감축 및 재활용을 유도하고 있다. 하지만 재활용이 불가능한 상태의 폐기물과 재활용처리 후 발생하는 부산물 등은 최종적으로 소각과 매립을 통하여 처리되고 있다. 이처럼 소각처리 될 수밖에 없는 폐기물은 단순 소각처리 되는 양을 최소화하고 연소과정에서 발생되는 에너지를 회수(Recovery)하여 열 또는 전력에너지로 적극 활용해야 할 필요가 있다. 하지만 현행 에너지 회수기준의 회수율 산정 방법은 생산에너지를 기준으로 하여 생산 후 버려지는 에너지도 포함됨으로써 실질적인 회수로 판단하기에 한계가 존재한다. 즉, 현행 에너지 회수기준은 회수율 증진을 위한 기술개발 및 시설개선 등과 같은 도입취지와 목적을 충분히 반영하지 못하고 있는 실정이다. 또한 에너지회수율 산정의 핵심 매개변수인 폐기물 저위발열량에 대한 측정 및 분석 방법의 명확한 공통기준이 없어 객관성이 부족한 상황이다. 이에 2015년 「폐기물관리법」 시행규칙 제3조제2항 “폐자원에너지 회수・사용률 산정방법”에서는 폐기물 소각 처리를 통하여 회수되는 에너지 중 실제 사용되는 에너지의 비율을 바탕으로 하는 에너지 회수・사용률 산정방법과 투입 폐기물로부터 기원하는 정확한 투입에너지 산정을 위한 저위발열량 산정방법을 제정・고시하였다. 본 연구에서는 새로 제정된 “폐자원에너지 회수・사용률 산정방법”을 바탕으로 국내 사업장폐기물 소각시설에서의 폐기물 저위발열량과 에너지 회수・사용률을 산정하였다. 산정에 요구되는 데이터는 3개월간의 업체 내실제 계측데이터를 활용하였으며, 계측이 불가능한 항목은 현장 측정 결과를 적용하였다. 대상시설은 스토커소각로 3기(시설 A, B, C)와 로터리킬른-스토커 병합방식 소각로 1기(시설 D)로 하였으며, 주별・월별・분기별로 구분하여 산정 결과를 도출하였다. 분기별 산정결과 폐기물 저위발열량의 경우 시설 A, B, C, D 각각 3,684kcal/kg, 2,960kcal/kg, 3,081kcal/kg, 2,794kcal/kg로 산정되었으며, 에너지회수・사용률은 각각 54.2%, 54.6%, 64.7%, 52.1%로 산정되었다. 이러한 결과는 에너지생산량 기준의 에너지회수율 대비 약 5∼20% 차이를 나타냈으며, 에너지회수・사용률을 높이기 위해서는 생산된 에너지 중 판매량을 최대화 하는 것이 가장 중요하고 효과적일 것으로 판단된다. 또한 장기적으로 보조연료 투입량과 전력 사용량 감축을 위한 기술개발과 시설공정 및 운영방식의 개선이 필요할 것으로 사료된다.
        12.
        2016.02 KCI 등재 서비스 종료(열람 제한)
        This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely CO2 with a small amount of CH4 and N2O. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about 3,174,000 tCO2eq. To look at it by year, the biggest amount was about 877,000 tCO2eq in 2013. To look at it by region, Gyeonggido showed the biggest amount (about 163,000 tCO2eq annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about 154 kCO2eq annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.