검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of fuel injection pressure changed from 45 to 65 MPa on combustion and emission characteristics were investigated in a common rail direct injection (CRDI) diesel engine fueled with diesel and palm oil biodiesel blends. The engine speed and engine load were controlled at constant 1700rpm and 100Nm, respectively. The tested fuel were PBD20 (20 vol.% palm oil biodiesel blended with 80 vol.% diesel fuel). The main and pilot injection timing was fixed at 3.5°CA BTDC and 27°CA BTDC (before top dead center), respectively. The experimental results show that the combustion pressure and heat release rate increased. In addition, the indicated mean effective pressure (IMEP) and maximum combustion pressure increased with an increase of the fuel injection pressure. Hydrocarbon (HC), smoke opacity and carbon monoxide (CO) decreased, but oxides of nitrogen (NOx) emissions increased as fuel injection pressure increased.
        4,000원
        6.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Injection rate, injection quantity and injection timing of fuel are controlled precisely by electric control in CRDI system.Particularly, injection rate being influenced with injection pressure affects to spray characteristics and fuel-air ratio, so it is a very important factor in diesel combustion. In this study, injection rates in accordance with injection pressure at a constant ambient pressure were measured with Zeuch's method. Under the same condition, non-evaporating spray images were taken with a high speed camera and analyzed carefully with Adobe Photoshop CS3. Macroscopic spray characteristics and breakup processes in the spray could be found from the examined and analyzed data. Injection start time and injection period were practically affected with injection pressure. Also, initial injection rate, spray penetration, spray angle and breakup of high density droplets region in the spray were affected with injection pressure. The results and techniques of spray visualization and injection rate measurement in this study would be practically effective to study a high pressure diesel spray for common rail direct injection system.
        4,000원
        8.
        2011.01 KCI 등재 서비스 종료(열람 제한)
        The new empirical static model was constructed on the basis of dimension analysis to predict the pressure drop according to the operating conditions. The empirical static model consists of the initial pressure drop term (N dust = ω0υf / P pulse t) and the dust mass number term (Δp initial), and two parameters (dust deposit resistance and exponent of dust mass number) have been estimated from experimental data. The optimum injection distance was identified in the 64 experimental data at the fixed filtration velocity and pulse pressure. The dust deposit resistance (K d), one of the empirical static model parameters got the minimum value at , d=0.11m, at which the total pressure drop was minimized. The exponent of dust mass number was interpreted as the elasticity of pressure drop to the dust mass number. The elasticity of the unimodal behavior had also a maximum value at , d=0.11m, at which the pressure drop increased most rapidly with the dust mass number. Additionally, the correlation coefficient for the new empirical static model was 0.914.
        9.
        2004.03 KCI 등재 서비스 종료(열람 제한)
        The change of pressure drop according to the change in the inlet concentration, pulse interval, and injection distance of pulse air jet type bag filters, and the effect of venturi installation are as follows. The pressure drop with the range of 30 to 50mmH2O varies according to the injection distance with 30, 50, 70, 90sec and the inlet concentration of venture built-in fabric filters. For the lower concentration of 0.5g/m3 and 1g/m3, the pressure drop(ΔP) was stable 60 to 90minutes after operation. For the higher concentration of 3g/m3, as ΔP continues to go up, pulse interval should be set shorter than 30 seconds. The pressure drop with the injection distance of 110mm, when inlet dust concentration is 0.5g/m3 or 1g/m3, is 1.3 to 2 lower than with the injection distance of 50, 160, and 220mm, which means that the inflow amount of the secondary air by the instant acceleration is large. The injection distance of 2g/m3 and 3g/m3 has the similar pressure distribution. The higher inlet concentration is, the more important pulse interval is than injection distance. The pressure drop has proved to be larger when inlet concentration is lower and injection distance closer, on condition that the venturi is installed. The change in the pressure drop was smallest when injection distance was 50mm, followed by 220mm, 160mm, and 110mm.