검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2023.05 구독 인증기관·개인회원 무료
        Al-B4C neutron absorbers are currently widely used to maintain the subcriticality of both wet and dry storage facilities of spent nuclear fuel (SNF), thus long-term and high-temperature material integrity of the absorbers has to be guaranteed for the expected operation periods of those facilities. Surface corrosion solely has been the main issue for the absorber performance and safety; however, the possibility of irradiation-assisted degradation has been recently suggested from an investigation on Al-B4C surveillance coupons used in a Korean spent nuclear fuel pool (SFP). Larger radiation damage than expectation was speculated to be induced from 10B(n, α)7Li reactions, which emit about a MeV α-particles and Li ions. In this study, we experimentally emulated the radiation damage accumulated in an Al-B4C neutron absorber utilizing heavy-ion accelerator. The absorber specimens were irradiated with He ions at various estimated system temperatures for a model SNF storage facility (room temperature, 150, 270, and 400°C). Through the in-situ heated ion irradiation, three exponentially increasing level of radiation damages (0.01, 0.1, and 1 dpa or displacement per atom) were achieved to compare differential gas bubble formation at near surface of the absorber, which could cause premature absorber corrosion and subsequential 10B loss in an SNF storage system. An extremely high radiation damage (10 dpa), which is unlikely achievable during a dry storage period, was also emulated through high temperature irradiation (350°C) to further test the radiation resistance of the absorber, conservatively. The irradiated specimens were characterized using HR-TEM and the average size and number density of radiation-induced He bubbles were measured from the obtained bright field (BF) TEM micrographs. Measured helium bubble sizes tend to increase with increasing system (or irradiation) temperature while decrease in their number density. Helium bubbles were found from even the lowest radiation damage specimens (0.01 dpa). Bubble coalescence was significant at grain boundaries and the irradiated specimen morphology was particularly similar with the bubble morphology observed at the interface between aluminum alloy matrix and B4C particle of the surveillance coupons. These characterized irradiated specimens will be used for the corrosion test with high-temperature humid gas to further study the irradiation-assisted degradation mechanism of the absorber in dry SNF storage system.
        2.
        2022.10 구독 인증기관·개인회원 무료
        The saturation rates of the spent fuel (SF) wet storage at the Kori Nuclear Power Plant (NPP), Hanbit, and Hanul are 83.3%, 74.2%, and 80.8% as of the fourth quarter of 2021. The storages of Kori NPP and Hanbit NPP are expected to be saturated in 2031, and Hanul is expected to be saturated in 2032. Therefore, the construction of an interim storage facility to store the SF temporarily stored in the NPP was planned, and preparations for the safe transport of the SF are required. In this paper, radiological preliminary assessment using NRC-RADTRAN in the process of sea transport of SF from the wet storage or ISFSI of the Hanbit NPP to the optional interim storage facility was performed. Since domestic SF transport vessels are not currently in operation, the specifications of the UK Pacific Grebe vessel which can carry up to 20 casks were used. The transport cask used the specifications of KORAD-21, a transport container developed in Korea. Because it can carry more SF assemblies than the existing KN-18. In addition, a land transport safety test was conducted in 2020 and a sea transport test is planned. The sea transport route was entered by referring to the transport route of domestic low and intermediate level waste. The accidents rate was calculated using statistics on maritime accidents from 2017 to 2021. The probability accidents along the transportation route were evaluated as 3.152E -10. When transporting to an interim storage facility, the SF expected to be the main transport target was selected as WH 17X17, combustion 45,000 MWD/MTU, and concentration of 4.5%. The source term was calculated and entered according to this data and the release fraction was entered with reference to the DOE report. In the case of normal transport without accident, the individual dose of the crew member and public residents were estimated to be 0.0525% and 0.000492% of the annual limit of 1 mSv/yr for the general public. Under the accident conditions, the annual individual doses of residents were 0.0011%, 0.0023%, 0.0034%, and 0.0046% of the annual limit of 1 mSv/yr when carrying 5, 10, 15, and 20 casks. Currently, the site of the interim storage facility has not been precisely determined, but a preliminary radiation assessment through sea transport resulted in a significantly lower than the limit. Combined scenario sea transport followed by land transport will be carried out in the next stage of study.
        3.
        2021.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A paradigm shift in the government’s energy policy was reflected in its declaration of early closure of old nuclear plants as well as cancellation of plans for the construction of new plants. To this end, unit 1 of Kori Nuclear Power Plant was permanently shut down and is set for decommission. Based on these changes, the off-site transport of spent fuels from nuclear power plants has become a critical issue. The purpose of this study is to develop an optimized method for transportation of spent fuels from Kori Nuclear Power Plant’s units 1, 2, 3, and 4 to an assumed interim storage facility by simulating the scenarios using the Flexsim software, which is widely used in logistics and manufacturing applications. The results of the simulation suggest that the optimized transport methods may contribute to the development of delivery schedule of spent fuels in the near future. Furthermore, these methods can be applied to decommissioning plan of nuclear power plants.
        4,600원
        11.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        일본 정부는 사용후핵연료의 중간저장시설의 입지로 아우모리현의 무쯔시를 선정했다. 2000년부터 시작된 유치활동이 5 년만에 결실을 맺은 것이다. 한국은 사용후핵연료를 원자력 발전소 내에 저장하고 있는데 2016년이면 저장한계에 이를 것으로 전망되고 있어 일본의 사례연구는 한국에 시사하는 바가 크다. 한국은 경주에 중, 저준위 방사성 폐기물 저장시설을 성공적으로 유치한 경험이 있어 사용후핵연료의 저장시설을 유치하는 학습경험을 축적한 바 있는데 두 나라의 큰 차이점은 한국은 경쟁적인 주민투표를 통하면서 막대한 지역지원금을 지원한다는 점이고 일본은 주민투표를 시행하지 않고 지방자치 정치의 리더쉽이 문제를 해결하는 방식을 택했다는 점이다. 엄청난 지역지원금이 지원되지 않은 점도 일본의 특징이다. 본 연구가 한국의 사용후핵 연료 저장시설을 유치하는 데 도움이 되었으면 하는 바람이다.
        4,000원