검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, a nanocomposite containing gold (Au) nanofibers decorated iron-metal–organic framework (Fe-MOF) was successfully synthesized for electrochemical detection of acetaminophen (AAP). The as-synthesized Au@Fe-MOF nanocomposite was confirmed by various characterization techniques. Morphological analysis showed that the Au nanofibers with an average size of less than 10 nm were dispersed on the Fe-MOF. Cyclic voltammetric analysis showed that the Au@Fe-MOF nanocomposite showed well-defined redox peaks with higher current than that of GCE and Fe-MOF. The Au@Fe-MOF/ GCE exhibited a linear range, sensitivity, and detection limit of 0.5–18 μM, 4.95 μM/μA/cm2, and 0.12 μM, respectively. The Au@Fe-MOF/GCE showed a very low response for the interference materials. The real sample analysis revealed that the Au@Fe-MOF/GCE showed good recovery towards the AAP in urine and paracetamol. Therefore, the developed sensor can be used for quality control of AAP.
        4,000원
        2.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene and Fe3O4 were bound by electrostatic attraction and prepared by effective reduction through microwave treatments. As a result of fabricating graphene with Fe3O4 as a composite material, it has been confirmed that it contributes to the structural improvement in graphene stabilization and at the same time, it shows improved electrochemical performance through improved charge transfer. It was also confirmed that the crystalline Fe3O4 was uniformly dispersed in the rGO sheet, effectively blocking the reaggregation due to the van der Waals interaction between the neighboring rGO sheets. The structural analysis of prepared composites was confirmed by transmission electron microscopy, and X-ray diffractometer. Electrochemical properties of composites were studied by cyclic voltammetry, galvanostatic charge–discharge curves, and electrochemical impedance spectroscopy. The Fe3O4 (0.4 M)/rGO composite showed a high specific capacitance of 972 F g−1 at the current density of 1 A g−1 in 6 M KOH electrolyte, which is higher than that of the pristine materials rGO (251 F g−1) and Fe3O4 (183 F g−1). Also, the prepared composites showed a very stable cyclic behavior at high current density, as well as an improvement in comparison with pristine materials in terms of resistance.
        4,000원