검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The design and analysis of the rigidity and deformation of the vehicle body are basically performed in two forms. First, the relative response of components separated from a parent system or connected as a model of a subsystem is examined. Second, the entire model is used to consider the absolute response of the components to the externally transmitted vehicle service load, which is defined as that of the entire vehicle body system. In this paper, we propose the finite element modeling for the structural design of the car body. First, we will explain the simple finite element modeling of the car body, explain the method of formulating the stiffness of the joint, and finally the shell element. The proposed finite element modeling is proposed. By applying the proposal, it is possible to propose finite element modeling of all medium and large passenger cars less than 3 tons.
        4,000원
        2.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Following the earthquake that shook the city of Gyeongju, Korea, in 2016, it became apparent that research on the safety of cultural heritages against the seismic hazards is necessary in Korea. Predictions of how historically significant stone pagodas would behave the earthquakes anticipated in near future, which are the subject of this study, is also required. In this study, the dynamic characteristics of 15 cultural heritage designated stone pagodas of Korea were investigated, including natural frequency and damping ratio, and the stiffness of the stone material and its contact area were determined using eigenvalue analysis by assuming the stone pagodas to be multi-degree-of-freedom structures. The results of this study enable the structural modeling of stone pagodas using a finite element analysis program and the method is expected to be useful in assessing the structural safety of stone pagodas against vertical loads as well as lateral forces, including earthquakes. Also, by identifying the dynamic characteristics of the structures, the results of this study can be utilized as a nondestructive testing method to determine the rigidity of cultural heritage structures and to identify inherent problems. The natural frequencies of the Korean stone pagodas were measured to be within 3.5~8.3㎐, excluding cases with distinct natural frequency results, and it was determined that the natural frequencies of the stone pagodas are influenced by various parameters including the height and joint stiffness of the structures.
        4,000원
        3.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the 5 joint toggle link of a injection molding machine is analyzed. Considering toggle link kinematics and frictions at the pin joints, clamping forces for each cross head position are calculated. The maximum clamping force and the install position of a tail-stock are determined by the stiffness of links, plates and tie-bar. The kinematic results of a finite element analysis considering friction and stiffness are compared with measured results
        4,000원
        4.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        콘크리트 슬래브를 공장에서 제작하여 도로포장의 신설 또는 보수에 사용하는 공법인 프리캐스트 콘크리트 포장의 하중전달 성능을 평가하기 위하여 연구를 수행하였다. 실내실험을 통해 다웰바 연결 부분의 그라우팅 효과를 측정할 수 있는 방법을 고안하였으며 이러한 실험을 위해 실험체를 제작하여 실험하였다. 실험을 수행한 결과 그리우팅을 한 다웰바의 전단강도는 콘크리트와 일체식으로 된 다웰바의 전단강도에 비해 떨어지지 않음을 알 수 있었다. 이울러 현장에서의 시험시공을 통해 설치된 보수용 프리캐스트 콘크리트 포장에 대해서도 FWD 시험을 실시하여 하중전달 성능을 평가하였다. 현장 실험 결과 기존 콘크리트 포장에 비해 슬래브 중앙부에서의 처짐은 다소 크게 나타나나, 줄눈부에서의 하중전달율은 거의 유사한 것으로 나타났다.
        4,200원
        7.
        2019.04 서비스 종료(열람 제한)
        This paper is to clarify the boundary condition of the joint connection in the multi-span vinyl greenhouse. It is carried out that experiments for the rotational stiffness of the joint connectors used in both the field and the guidelines of the greenhouse constructions.
        8.
        2009.03 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 최근 계단공사의 시공성 개선을 위하여 새롭게 제안된 Hi-Form 접합부를 대상으로 동특성 정보를 이용하는 계확정기법을 응용하여 접합부의 강성평가를 수행하였으며 해석 시 동 접합부의 합리적인 모델링기법을 제시하였다. 실험 및 해석결과, 균열패턴 및 하중-변형관계 그리고 손상분포로부터 Hi-Form 접합부는 완전한 응력전달을 위한 강접합으로 간주하기 어려운 것으로 나타났으며, 실험결과에 근거하여 Hi-Form 접합부를 약 50%의 강성감소 요소로 모델링 할 것을 제안하였다.
        9.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        Unlike robotic systems, humans excel at a variety of tasks by utilizing their intrinsic impedance, force sensation, and tactile contact clues. By examining human strategy in arm impedance control, we may be able to teach robotic manipulator's human's superior motor skills in contact tacks.This paper develops a novel method for estimating and predicting the human joint impedance using the electromyogram(EMG)signals and limb position measurements. The EMG signal is the summation of MUAPs(motor unit action potentials). Determination of the relationship between the EMG signals and joint stiffness is difficult, due to irregularities and uncertainties of the EMG signals. In this research, an artificial neural network(ANN)model was developed to model the relation between the EMG and joint stiffness. The proposed method estimates and predicts the multi joint stiffness without complex calculation and specialized apparatus. The feasibility of the developed model was confirmed by experiments and simulations.