본 연구에서는 시험도로 계측 자료와 유한요소해석 기법을 사용한 구조해석 결과를 비교하여 포장 전반에 걸친 거동을 분석할 수 있는 기반을 마련하는데 목적이 있다. 시험도로와 같이 다양한 하중 재하시험을 통하여 얻은 계측 결과와 유한요소 해석 결과를 비교하여 타당성을 입증할 경우, 향후 포장의 구조해석 및 설계 과정에서 유한요소해석 기법의 다양한 응용이 가능하다. 본 연구에서는 슬래브, 린, 보조기층, 길어깨, 다웰 및 타이바가 모두 포함된 3차원 콘크리트 해석 모형을 개발하여 동일 조건의 시험도로 계측값과 비교분석을 실시하였다. 또한, 다양한 온도 조건에서 구조해석을 수행하여 컬링에 의한 슬래브 거동을 파악하였다. 콘크리트포장에서 얻어진 변형률계의 계측 결과들과 유한요소해석에서 얻어진 예측 변형률사이의 오차를 줄이기 위하여 분석 방식은 실제 상황과 유사하게 모사하도록 구현하였으며, 가능하면 변수들을 실제 상황과 일치하도록 변화시켰다. 온도 변화 등 여러 가지 상황을 현장과 동일하게 만든 결과, 유한요소해석에서 예측한 값들이 현장에서 얻은 계측값에 유사하게 접근하는 것을 확인할 수 있었다. 그러나 린층에서는 해석값이 다소 과다하게 발생하여 추가 연구가 필요할 것으로 판단된다. 또한 실제 컬링을 모사한 구조해석 결과 계측값과 거의 동일하게 나타났으며 영구컬링의 존재도 확인할 수 있었다.
아스팔트 포장은 점탄성재료로서 포장체에 발생되는 토압은 차량하중의 크기와 재하속도, 아스팔트 포장층의 온도와 하부층의 재료구성에 따라 크기와 분포 양상이 다르게 발생된다. 본 연구는 이러한 다양한 조건에 따른 포장체 하부의 토압분포를 분석하고, 기층과 보조기층의 지지력을 평가하는 평판재하시험 기준과 실제 계측된 토압과의 비교를 통해 현재 적용되고 있는 지지력기준에 대한 타당성을 검토하고자 한다. 또한 실제 포장단면을 모사한 유한요소해석을 통해 포장체 하부에 발생되는 토압을 예측하고 계측결과와 비교함으로서 포장체의 거동을 예측할 수 있는 모델을 제안 하고자 한다. 이를 위해서 시험도로의 2004년 8, 9, 11월과 2005년 8월에 계측이 수행된 아스팔트 포장 동적재하시험 결과 중 계측기 상태가 양호한 A5, A7, A14, A15 단면에 대해 계측결과의 분석을 수행하였다. 토압계의 분석은 차량하중의 크기와 속도. 아스팔트 포장의 온도, 포장하부의 재료구성에 따른 토압의 크기 변화와 차량하중으로 인한 포장체 내부의 횡방향과 깊이방향 하중의 영향 범위를 분석하였다. 포장체의 유한요소해석은 ABAQUS 프로그램을 활용하였으며, 실제 포장체의 거동을 모사하기 위해 시험도로 포장단면을 그대로 반영하고 계측이 이루어진 당시의 온도계측 자료를 활용해 아스팔트 포장의 물성을 적용하였다. 토압계의 분석결과 차량의 하중이 크고 저속으로 주행 할 때 토압의 크기는 증가하고 아스팔트층의 온도가 높을수록 하중의 영향반경이 작아지고 최대 토압크기는 증가하였다. 또한 실제 포장단면과 물성을 적용한 해석결과 계측결과와 매우 유사한 형태의 토압분포와 크기를 보였다. 그리고 기존 보조기층 및 동상방지층의 다짐관리 기준은 실측된 토압과 비교해 볼때 상당히 높은 수준으로 나타났다.
국내의 포장 재료와 교통 및 기후조건이 반영되는 포장설계법 개발을 위한 연구가 진행중에 있으며, 이를 위해 실제 교통량 및 기후조건이 반영되고 이에 따른 포장의 거동을 모니터링 할 수 있는 대규모의 현장시험시설로 시험도로를 건설하였다. 시험도로 아스팔트 포장구간은 15개의 다양한 두께 및 재료를 가진 단면들로 구성되어 있다. 이러한 단면들을 평가하기 위해 포장체 내에 다양한 계측기들이 매설되어 있다. 계측기 매설에 있어서 핵심 요소는 매설 위치의 정확성과 장기적인 생존율 및 내구성이다. 외국의 시험사례를 보면, 이런 정확성과 내구성은 매설 방법에 크게 영향을 받는다. 이에 본 연구에서는 2000년도부터 3년여 동안 일반적인 계측기 매설 방법인 마운드, 블록아웃. 트렌치컷에 대해 시험시공을 수행하였으며 시험시공 결과를 분석하여 시험도로에 적용하였다. 위치의 정확성, 생존의 안전성, 시공성, 재료의 균질성 측면에서 시험시공 결과를 평가한 결과 블록아웃이 가장 효율적인 방법으로 나타났다. 그러나, 표층의 경우 블록아웃에 부적절한 층두께 등의 특성을 감안하여 마운드 방법을 사용하는 것으로 결정하였다. 아스팔트 기층과 중간층의 매설에는 블록아웃을, 표층의 매설에는 마운드를 사용하는 것으로 결정했다. 2003년 9월 3일부터 11월 18일까지 2달 여에 걸쳐 총 374개의 아스팔트 포장 변형률계를 시험도로에 매설하였다. 계측값 분석 결과, 마운드의 경우 6.3%, 블록아웃은 2.5%의 계측기가 매설 전후의 계측값 변화가 일반적인 계측기 사양 범위를 초과하는 것으로 나타났다. 생존율의 경우 매설후 손실된 계측기는 2개로 99.5%의 높은 생존율을 나타났다.