검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, due to the expansion of the logistics industry, demand for logistics automation equipment is increasing. The modern logistics industry is a high-tech industry that combines various technologies. In general, as various technologies are grafted, the complexity of the system increases, and the occurrence rate of defects and failures also increases. As such, it is time for a predictive maintenance model specialized for logistics automation equipment. In this paper, in order to secure the operational safety and reliability of the parcel loading system, a predictive maintenance platform was implemented based on the Naive Bayes-LSTM(Long Short Term Memory) model. The predictive maintenance platform presented in this paper works by collecting data and receiving data based on a RabbitMQ, loading data in an InMemory method using a Redis, and managing snapshot DB in real time. Also, in this paper, as a verification of the Naive Bayes-LSTM predictive maintenance platform, the function of measuring the time for data collection/storage/processing and determining outliers/normal values was confirmed. The predictive maintenance platform can contribute to securing reliability and safety by identifying potential failures and defects that may occur in the operation of the parcel loading system in the future.
        4,200원
        5.
        2022.05 구독 인증기관·개인회원 무료
        The amount of temporarily stored spent nuclear fuel in South Korea will be reaching saturation in a near future. Therefore, it is an urgent issue to construct a spent nuclear fuel storage system. In order to construct the storage system, some coastal environmental characteristics such as temperature, pH, and chemical composition of sea water in South Korea have to be evaluated and predicted because they can affect in deterioration of the storage system. However, in South Korea, the coastal environmental characteristics of area where the storage system is likely to be built are not well established until now. In this study, a time-series deep-learning algorithm is developed using the Long-Short Term Memory (LSTM) algorithm to predict and evaluate the coastal environmental characteristics based on the wellestablished data from Korea Meteorological Administration (KMA) and Ministry of Oceans and Fisheries (MOF). As a result, by developing the predictive model to evaluate the coastal environmental characteristics, we intend to apply it for site evaluation to construct the spent nuclear fuel storage system or many other applications related to the nuclear as well.
        6.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This aim of this study is to develop a model for predicting road surface temperature using an LSTM network to predict road surface temperature associated with road icing. METHODS : A long short-term memory (LSTM) neural network suitable for time-series data with time correlation is used in the analysis. Moreover, an optimal neural network architecture is designed via hyperparameter search and verification using learning and validation data. Finally, the generalization performance is evaluated based on the RMSE using unseen data as test data. RESULTS : The results show that the predicted data are similar to the actual road surface temperature patterns , and that the network appears to be generalized. CONCLUSIONS : The LSTM model improves the accuracy and generalization of road surface temperature prediction, as compared with other machine learning models.
        4,000원
        9.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A lot of sensor and control signals is generated by an industrial controller and related internet-of-things in discrete manufacturing system. The acquired signals are such records indicating whether several process operations have been correctly conducted or not in the system, therefore they are usually composed of binary numbers. For example, once a certain sensor turns on, the corresponding value is changed from 0 to 1, and it means the process is finished the previous operation and ready to conduct next operation. If an actuator starts to move, the corresponding value is changed from 0 to 1 and it indicates the corresponding operation is been conducting. Because traditional fault detection approaches are generally conducted with analog sensor signals and the signals show stationary during normal operation states, it is not simple to identify whether the manufacturing process works properly via conventional fault detection methods. However, digital control signals collected from a programmable logic controller continuously vary during normal process operation in order to show inherent sequence information which indicates the conducting operation tasks. Therefore, in this research, it is proposed to a recurrent neural network-based fault detection approach for considering sequential patterns in normal states of the manufacturing process. Using the constructed long short-term memory based fault detection, it is possible to predict the next control signals and detect faulty states by compared the predicted and real control signals in real-time. We validated and verified the proposed fault detection methods using digital control signals which are collected from a laser marking process, and the method provide good detection performance only using binary values.
        4,000원
        11.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Interest rate spreads indicate the conditions of the economy and serve as an indicator of the recession. The purpose of this study is to predict Korea's interest rate spreads using US data with long-term continuity. To this end, 27 US economic data were used, and the entire data was reduced to 5 dimensions through principal component analysis to build a dataset necessary for prediction. In the prediction model of this study, three RNN models (BasicRNN, LSTM, and GRU) predict the US interest rate spread and use the predicted results in the SVR ensemble model to predict the Korean interest rate spread. The SVR ensemble model predicted Korea's interest rate spread as RMSE 0.0658, which showed more accurate predictive power than the general ensemble model predicted as RMSE 0.0905, and showed excellent performance in terms of tendency to respond to fluctuations. In addition, improved prediction performance was confirmed through period division according to policy changes. This study presented a new way to predict interest rates and yielded better results. We predict that if you use refined data that represents the global economic situation through follow-up studies, you will be able to show higher interest rate predictions and predict economic conditions in Korea as well as other countries.
        4,000원
        12.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Supply chain managers seek to achieve global optimization by solving problems in the supply chain's business process. However, companies in the supply chain hide the adverse information and inform only the beneficial information, so the information is distorted and cannot be the information that describes the entire supply chain. In this case, supply chain managers can directly collect and analyze supply chain activity data to find and manage the companies described by the data. Therefore, this study proposes a method to collect the order-inventory information from each company in the supply chain and detect the companies whose data characteristics are explained through deep learning. The supply chain consists of Manufacturer, Distributor, Wholesaler, Retailer, and training and testing data uses 600 weeks of time series inventory information. The purpose of the experiment is to improve the detection accuracy by adjusting the parameter values of the deep learning network, and the parameters for comparison are set by learning rate (lr = 0.001, 0.01, 0.1) and batch size (bs = 1, 5). Experimental results show that the detection accuracy is improved by adjusting the values of the parameters, but the values of the parameters depend on data and model characteristics.
        4,000원
        13.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Turbidity has various effects on the water quality and ecosystem of a river. High turbidity during floods increases the operation cost of a drinking water supply system. Thus, the management of turbidity is essential for providing safe water to the public. There have been various efforts to estimate turbidity in river systems for proper management and early warning of high turbidity in the water supply process. Advanced data analysis technology using machine learning has been increasingly used in water quality management processes. Artificial neural networks(ANNs) is one of the first algorithms applied, where the overfitting of a model to observed data and vanishing gradient in the backpropagation process limit the wide application of ANNs in practice. In recent years, deep learning, which overcomes the limitations of ANNs, has been applied in water quality management. LSTM(Long-Short Term Memory) is one of novel deep learning algorithms that is widely used in the analysis of time series data. In this study, LSTM is used for the prediction of high turbidity(>30 NTU) in a river from the relationship of turbidity to discharge, which enables early warning of high turbidity in a drinking water supply system. The model showed 0.98, 0.99, 0.98 and 0.99 for precision, recall, F1-score and accuracy respectively, for the prediction of high turbidity in a river with 2 hour frequency data. The sensitivity of the model to the observation intervals of data is also compared with time periods of 2 hour, 8 hour, 1 day and 2 days. The model shows higher precision with shorter observation intervals, which underscores the importance of collecting high frequency data for better management of water resources in the future.
        4,000원
        14.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        본 연구는 물리적 수리·수문모형의 적용이 제한적인 감조하천에서의 수위예측을 목적으로 하고 있으며, 이를 위해 한강 잠수교를 대상으로 딥러닝 오픈소스 소프트웨어 라이브러리인 TensorFlow를 활용하여 LSTM 모형을 구성하고 2011년부터 2017년까지의 10분 단위의 잠수교 수위, 팔당 댐 방류량과 한강하구 강화대교지점의 예측조위 자료를 이용하여 모형학습(2011~2016) 및 수위예측(2017)을 수행하였다. 모형 매개변수는 민감도 분석을 통해 은닉층의 개수는 6개, 학습속도는 0.01, 학습횟수는 3000번로 결정하였으며, 모형 학습 시 학습정보의 시간적 양을 결정하는 중요한 매개변수인 시퀀스길이는 1시간, 3시간, 6시간으로 변화시키며 모의하였다. 최종적으로 선행시간에 따른 모의 예측능력을 평가하기 위해 LSTM 모형의 예측 선행시간을 6개(1 ~ 24시간)로 구분하여 실측수위와 예측수위와의 비교·분석을 수행한 결과, LSTM 모형의 최적의 성능을 내 는 결과는 시퀀스길이를 1시간으로 하였을 때로 분석되었으며, 특히 선행시간 1시간에 대한 예측정확도는 RMSE는 0.065 m, NSE는 0.99로 실 측수위에 매우 근접한 예측 결과를 나타내었다. 또한 시퀀스길이에 상관없이 선행시간이 길어질수록 모형의 예측 정확도는 2017년 전기간에 걸쳐 평균적으로 RMSE 0.08 m에서 0.28 m로 오차가 증가하였으며, NSE는 0.99에서 0.74로 감소하였다.