검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 352

        67.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, with the development of ultra-precision technology, the quality improvement of optical parts and various products is emerging. The need for a difficult-to-cut material that is light and exhibits high hardness and high strength physical properties is being emphasized. Ultra-precision machining processing solutions for these difficult-to-cut materials are being actively developed. In this research, experiments were performed using a DTM machine equipped with a laser-assisted machining module for ultra-precision machining of CaF2 materials that are brittle but exhibit high transmittance in a wide range from ultraviolet to infrared.
        4,000원
        68.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to environmental pollution, regulations on existing petroleum-based fuels are increasing day by day. LNG is in the spotlight as an eco-friendly fuel that does not emit NOx or SOx, but its boiling point is -163°C, so it needs to be handled with care. Materials that can be used at the above temperature are defined by IMO through the IGC Code. Among them, 9% nickel steel has great advantages in yield strength and tensile strength under cryogenic conditions, but it is difficult to use in arc welding such as FCAW for various reasons. This study is a study to apply fiber laser welding to solve this problem. As a previous study, this study conducted a study to find a welding heat source. After performing bead on plate welding, the optimal heat source was derived by analyzing the shape of the bead and adjusting the parameters of the heat source model. In this case, by applying the multi-island genetic algorithm, which is a global optimization algorithm, not the intuition of the researcher, accurate results could be derived in a wide range.
        4,000원
        69.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization(IMO), the number of ships fueled by Liquefied Natural Gas(LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk(IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. In this study, a study on penetration (HAZ depth, Penetration) and welding defects during fiber laser welding according to three types of shielding gases(nitrogen, argon, and helium) was conducted. To this end, a Bead on plate(BOP) experiment was performed under four fiber laser conditions(Power, Speed) for each shielding gas and welding defects caused by the use of the shielding gas were compared through cross-sectional observation, and the penetration depth was analyzed.
        4,000원
        70.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.
        4,000원
        71.
        2021.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        3,000원
        72.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A laser scabbling experiment was performed using a high-power fiber laser to investigate the removal rate of the concrete block and the scabbled depth. Concrete specimens with a 28-day compressive strength of 30 MPa were used in this study. Initially, we conducted the scabbling experiment under a stationary laser beam condition to determine the optimum scan speed. The laser interaction time with the concrete surface varied between 3 s and 40 s. The degree of spalling and vitrification on the surface was primarily dependent on the laser interaction time and beam power. Furthermore, thermal images were captured to investigate the spatial and temporal distribution of temperature during the scabbling process. Based on the experimental results, the scan speed at which the optical head moved over the concrete was set to be 300 mm∙min−1 or 600 mm∙min−1 for the 4.8-kW or 6.8-kW laser beam, respectively. The spalling rates and average depth on the concrete blocks were measured to be 87 cm3∙min−1 or 227 cm3∙min−1 and 6.9 mm or 9.8 mm with the 4.8-kW or 6.8-kW laser beams, respectively.
        4,000원
        73.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 라식수술 후 고위수차에 영향을 미치는 요인을 분석하였다. 방법 : 기존의 라식수술을 받은 42안(23.43±2.06세)을 대상으로 하였고, 눈의 고위수차는 파면수차계를 이용하여 측정하였다. 라식수술안의 고위수차에 대한 모든 독립변수들의 기여도는 단순선형회귀분석과 다중회귀분석을 이용하여 평가하였다. LASIK 대상자의 전체고위수차에 영향을 미치는 요인을 평가하기 위해 후진선택방법의 다중회귀분석이 사용되었다. 결과 : 라식수술 대상자에서 전체고위수차의 RMS 값은 4 mm 동공에서 0.121±0.050, 6 mm 동공에서는 0.570±0.260였다. 다중회귀분석에서 4 mm 동공의 전체고위수차와 관련 있는 변수는 각막절제직경과 OSI이었고, 6 mm 동공에서 전체고위수차와 관련 있는 변수는 각막두께, 각막절삭량, 각막절제직경, LCVA(photopic), HCVA(mesopic), MTF cutoff 등으로 나타났다. 최종 다중회귀모델에서, 4 mm 동공의 전체고위수차에 유의하 게(p<0.050) 영향을 미치는 변수는 OSI(p=0.036)로 나타났고, 6 mm 동공의 전체고위수차에 유의하게 영향을 미치는 변수는 각막절삭량(p=0.016), HCVA(mesopic)(p=0.002), MTF cutoff(p=0.039) 등으로 나타났다. 결론 : 본 연구의 결과는 라식수술 후 변화된 각막형상으로 증가된 고위수차가 눈의 광학적 시스템에 영향을 미치면서 시력의 질에 영향을 줄 수 있음을 시사한다.
        4,200원
        74.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For application in nuclear decommissioning, underwater laser cutting studies were conducted on thick stainless-steel plates for various cutting directions using a 6 kW fiber laser. For cutting along the horizontal direction with horizontal laser irradiation, the maximum cutting speed was 110 mm∙min−1 for a 48 mm thick stainless-steel plate. For cutting along the vertical direction with horizontal laser irradiation, a maximum speed of 120 mm∙min−1 was obtained for the same thickness, which confirmed that the cutting performance was similar but slightly better. Moreover, when cutting with vertically downward laser irradiation, the maximum cutting speed was 120 mm∙min−1 for a plate of the same thickness. Thus, the cutting performance for vertical irradiation was nearly identical to that for horizontal irradiation. In conclusion, it was possible to cut thick stainless-steel plates regardless of the laser irradiation and cutting directions, although the assist gas rose up due to buoyancy. These observations are expected to benefit laser cutting procedures during the actual dismantling of nuclear facilities.
        4,000원
        75.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study develops a new device system for measuring a slope of object with non-adhesive, non-contact and non-face-to-face, namely Inclinometer Slope Laser Measuring (ISLM), that is applicable in the field. This system includes cradle, laser, camera, and computer and the filming and is performed after laser projection at programmed intervals. After measuring the amount of displacement converted to numerical values, these values can then be transferred to the office using the selected data transmission method. The obtained results from the test carried out to verify the reliability of the ISLM system indicated that the ISLM system can measure with accurately level of 0.1mm/Pixel at 1m distance and when increasing the camera resolution, the precision might increase proportionally. Therefore, the proposed measure system may widely apply on-site for various constructions, especially, in the case of object with very high surface temperature where exhibits difficulty to directly measure the adjacent structures. However, due to the sensitive reaction to the illuminance, this method can be applied with caution at times of large changes in illuminance, such as at dawn and at dusk.
        4,000원
        76.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization (IMO), the number of ships fueled by Liquefied Natural Gas (LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. As a result of analyzing the bead shape according to laser BOP speed and Energy density performed in this study, it was confirmed that the penetration and energy density are proportional but the penetration and BOP speed are inverse proportional to some extent. In addition, a range of suitable welding speed and energy density were proposed for the 6.1mm thickness material performed in this study.
        4,000원
        77.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization (IMO), the number of ships fueled by Liquefied Natural Gas (LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. In Part I, the bead shape according to the welding output was analyzed and in PART II, ​​the penetration phenomenon according to the welding speed was analyzed after Bead on Plate (BOP) test. As a result of analyzing the bead shape according to laser power performed in this study, it was confirmed that the laser power and penetration depth are proportional to some extent. In addition, a range of suitable welding power was proposed for the 6.1mm thickness material performed in this study.
        4,000원
        78.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The multi-layered heat source model is a model that can cover most of existing studies and can be defined with a simple formula. Based on the methodology performed in previous studies, the welding heat source was found through experiments and FEM under the welding power conditions of three cases and the parameters of the welding heat source were analyzed according to the welding power. In this study, parameters of fiber laser welding heat source according to welding power were searched through optimization algorithm and finite element analysis, and the correlation was analyzed. It was confirmed that the concentration of the welding heat source in the 1st layer was high regardless of the welding power, and it was confirmed that the concentration of the welding heat source in the 5th layer (last layer) increased as the welding power increased. This reflects the shape of the weld bead that appears during actual fiber laser welding, and it was confirmed that this study represents the actual phenomenon.
        4,000원
        79.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an AISI 316 L alloy was manufactured using a selective laser melting (SLM) process. The tensile and impact toughness properties of the SLM AISI 316 L alloy were examined. In addition, stress relieving heat treatment (650oC / 2 h) was performed on the as-built SLM alloy to investigate the effects of heat treatment on the mechanical properties. In the as-built SLM AISI 316 L alloy, cellular dendrite and molten pool structures were observed. Although the molten pool did not disappear following heat treatment, EBSD KAM analytical results confirmed that the fractions of the low- and high-angle boundaries decreased and increased, respectively. As the heat treatment was performed, the yield strength decreased, but the tensile strength and elongation increased only slightly. Impact toughness results revealed that the impact energy increased by 33.5% when heat treatment was applied. The deformation behavior of the SLM AISI 316 L alloy was also examined in relation to the microstructure through analyses of the tensile and impact fracture surfaces.
        4,000원
        80.
        2021.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Well-crystallized vanadium pentoxide V2O5 thin films are fabricated on MgO single crystal substrates by using pulsed-laser deposition technique. The linear optical transmission spectra are measured and found to be in a wavelength range from 300 to 800 nm; the data are used to determine the linear refractive index of the V2O5 films. The value of linear refractive index decreases with increasing wavelength, and the relationship can be well explained by Wemple’s theory. The third-order nonlinear optical properties of the films are determined by a single beam z-scan method at a wavelength of 532 nm. The results show that the prepared V2O5 films exhibit a fast third-order nonlinear optical response with nonlinear absorption coefficient and nonlinear refractive index of 2.13 × 10−10 m/W and 2.07 × 10−15 cm2/kW, respectively. The real and imaginary parts of the nonlinear susceptibility are determined to be 3.03 × 10−11 esu and 1.12 × 10−11 esu, respectively. The enhancement of the nonlinear optical properties is discussed.
        3,000원
        1 2 3 4 5