검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 123

        21.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the formation, microstructure, and wear properties of Colmonoy 88 (Ni-17W-15Cr-3B-4Si wt.%) + Stellite 1 (Co-32Cr-17W wt.%) coating layers fabricated by high-velocity oxygen fuel (HVOF) spraying are investigated. Colmonoy 88 and Stellite 1 powders were mixed at a ratio of 1:0 and 5:5 vol.%. HVOF sprayed selffluxing composite coating layers were fabricated using the mixed powder feedstocks. The microstructures and wear properties of the composite coating layers are controlled via a high-frequency heat treatment. The two coating layers are composed of γ-Ni, Ni3B, W2B, and Cr23C6 phases. Co peaks are detected after the addition of Stellite 1 powder. Moreover, the WCrB2 hard phase is detected in all coating layers after the high-frequency heat treatment. Porosities were changed from 0.44% (Colmonoy 88) to 3.89% (Colmonoy 88 + ST#1) as the content of Stellite 1 powder increased. And porosity is denoted as 0.3% or less by inducing high-frequency heat treatment. The wear results confirm that the wear property significantly improves after the high-frequency heat treatment, because of the presence of wellcontrolled defects in the coating layers. The wear surfaces of the coated layers are observed and a wear mechanism for the Ni-based self-fluxing composite coating layers is proposed.
        4,200원
        22.
        2019.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) has versatile and intriguing properties, such as wide direct bandgap, high thermal conductivity, good thermal and chemical stability, and various functionalities. Due to these properties, AlN thin films have been applied in various fields. However, AlN thin films are usually deposited by high temperature processes like chemical vapor deposition. To further enlarge the application of AlN films, atomic layer deposition (ALD) has been studied as a method of AlN thin film deposition at low temperature. In this mini review paper, we summarize the results of recent studies on AlN film grown by thermal and plasma enhanced ALD in terms of processing temperature, precursor type, reactant gas, and plasma source. Thermal ALD can grow AlN thin films at a wafer temperature of 150~550 oC with alkyl/amine or chloride precursors. Due to the low reactivity with NH3 reactant gas, relatively high growth temperature and narrow window are reported. On the other hand, PEALD has an advantage of low temperature process, while crystallinity and defect level in the film are dependent on the plasma source. Lastly, we also introduce examples of application of ALD-grown AlN films in electronics.
        4,200원
        23.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[Mo(CO)6] as precursor and ozone(O3) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the Mo6+ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from 576 oC to 620 oC at 250 g/Nm after post-deposition annealing at 350 oC in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.
        4,000원
        25.
        2019.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        일반적으로 전기변색소자들은 전기변색물질, 전해질 그리고 상대전극물질로 구성되어 있다. 그 중에서, 상대전극물질은 소자의 장기전환 안정성 및 낮은 작동 전압 등과 같은 전기변색소자들의 성능을 향상하는데 매우 중요하다. 본 연구에서는 다이메틸 프탈레이트 기반 전기변색소자에 페로센과 카본 전극을 적용하고 그 성능을 테스트 하였다. 특히 카본 전극에서 우수한 장기전환 안정성이 구현되었다.
        4,000원
        27.
        2018.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microalgae produce not only lipids for biodiesel production but also valuable biochemicals which are often accumulated under cellular stress mediated by certain chemicals. While the microcarriers for the application of drug delivery systems for animal cells are widely studied, their applications into microalgal research or biorefinery are rarely investigated. Here we develope dual-functional magnetic microcapsules which work not only as flocculants for microalgal harvesting but also potentially as microcarriers for the controlled release of target chemicals stimulating microalgae to enhance the accumulation of valuable chemicals. Magnetic microcapsules are synthesized by layer-by-layer(LbL) coating of PSS-PDDA on Fe3O4 nanoparticle-embedded CaCO3 microparticles followed by removing CaCO3 sacrificial templates. The positively charged magnetic microcapsules flocculate microalgae by electrostatic interaction which are sequentially collected by the magnetophoretic separation. The microcapsules with a polycationic outer layer provide efficient binding sites for negatively charged microalgae and by that means are further utilized as a chemical-delivery and flocculation system for microalgal research and biorefineries.
        4,000원
        28.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Needle-like NiO protecting layers on NiCrAl alloy foam, used as support for hydrogen production, are introduced through electroplated Ni and subsequent microwave annealing. To improve the stability of the NiCrAl alloy foam, oxygen concentration of microwave annealing to form a needle-like NiO layer with good chemical stability and corrosion resistance is controlled in a range of 20 and 50 %. As the oxygen concentration increases to 50 %, needle-like NiO forms a dense coating layer on the NiCrAl alloy foam; this layer formation can be attributed to accelerated growth of the (200) plane. In addition, the increased oxygen concentration causes increased NiO/Ni ratio of the resultant coating layer on NiCrAl alloy foam due to improved rate of the oxidation reaction. As a result, the introduction of dense needle-like NiO layers formed at 50 % oxygen concentration improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the electrolyte and the foam. Thus, needle-like NiO can be proposed as a superb protecting layer to improve the chemical stability of NiCrAl alloy form.
        4,000원
        29.
        2018.05 구독 인증기관·개인회원 무료
        In Korea, concrete pavements were first applied to highways in 1981 and as a result of continued increase in length over the past years, 2,592 km of concrete pavement network is currently in service, of which 1,399 km(54%) of concrete pavements is 10 years or older, and 233km(9%) is 20 years or older. The length of concrete pavement sections nationwide has been steadily on the rise every year (EXTRI, 2017). Approximately 54% of current concrete pavement highway network will reach the service life limit in 2025 which means around 660 billion won is needed for future pavement repair project (EXTRI, 2017). Given that concrete pavements beyond design life still have a remaining service life, it is economically advantageous to repair them before reconstruction. Asphalt overlays are a major repair method for older concrete pavements. Depending on the concrete pavement condition, thickness and mixture of asphalt overlays are determined. Service life of asphalt overlays varies by the presence, time and size of cracks in existing concrete pavements and reflecting crack at joints. Temperature change of concrete pavement is among the major reaction parameters of reflecting crack. Reflecting crack develops when asphalt bottom-up cracking by longitudinal shrinkage and expansion due to temperature change of the concrete base layer, top-down cracking by temperature difference between top and bottom of concrete, and shear stress by traffic loading are combined (Baek, 2010). Crack and joint behaviors of concrete pavement vary between the base layer and the concrete surface of composite pavement system, and different conductivity by mixture and thickness of asphalt overlay leads to temperature change of concrete base course. This study measured temperatures of each layer of diverse composite pavements in place on site and analyzed differences in temperature change of concrete base layer depending on mixture and thickness of asphalt overlays. Overlay thickness parameters were 5cm and 10cm, two values most widely used, while mixture parameters were SMA and porous asphalt. Based on temperature change of concrete surface, this study also evaluated the difference of temperature change in concrete base layer with an asphalt overlay on top. Findings from this study are expected to be utilized for studies on mechanism and modeling of reflecting crack in old concrete pavements with asphalt overlays.
        30.
        2018.05 구독 인증기관·개인회원 무료
        In recent years, there have been applied methods for minimizing noise by adjusting the method of installing soundproof walls, soundproof tunnels, soundproofing rims, environmental facilities, etc., and the shape of the surface texture of tire treads and packaging materials for the purpose of reducing road noise. Low noise pavement methods such as rubber asphalt (CRM), open graded asphalt concrete (OGAC), permeable Friction Courses (PFC), open graded friction courses (OGFC) and porous asphalt have been applied to reduce road noise. Especially, porous pavement is the most widely used low noise pavement with porous structure, which can reduce noise and drain water through continuous void of pavement. On the other hand, porous asphalt pavement has problems such as reduction of noise reduction effect and difficulty of road surface management due to void closing and increase of construction cost. The purpose of this study is to develop ultra-thin layer hot mix asphalt pavement method which maximizes road noise reduction effect by surface micro voids (Recover asphalt pavement) to improve void clogging of present porous pavement method. For this study, maximum size 5mm aggregate and cationic-treated fiber reinforced asphalt modifier (CSM) were used. The Marshall design method was applied grain-size distribution curve was based on SMA mix design. Marshall test, TSR, MMLS3 test and Hamburg test were carried out to evaluate the mechanical properties of ultra -thin layered asphalt pavement method with surface micro voids. Also, the effect of road noise reduction was evaluated through field application in urban area.
        31.
        2018.05 구독 인증기관·개인회원 무료
        수소원자는 금속 표면에 흡착하여 해리되고 금속 격자 사이를 이동해 다시 수소분자로 재결합되어 탈착할 수 있으며 이러한 과정으로 수소는 금속을 통해 투과할 수 있다. 특히 수소원자는 팔라듐에서 높은 용해도와 이동도를 보이기 때문에 우수한 수소 투과 특성을 나타낸다. 본 연구에서는 무전해 도금을 이용하여 Pd 금속을 α-Al2O3 중공사 지지체에 증착시켜 SEM&EDS 분석을 통해 Pd 코팅 특성을 확인하였다. 치밀 Pd 층을 확인하기 위한 분리막의 leak 테스트 후 고온 수소투과 실험을 통해 분리막의 수소투과특성을 확인하였다. 본 연구는 “교육부 기본연구(NRF-2017R1D1A1B03036250)”의 지원으로 수행되었습니다.
        32.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TaNx film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as N2+H2 mixed gas, NH3, and H2. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using NH3 as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using N2+H2 mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown TaNx film with N2+H2 mixed gas, NH3, and H2. For a comparison, reactive sputter-grown TaNx film with N2 is also studied. The results reveal that ALD-grown TaNx films with NH3 and H2 include a metallic Ta-N bond, which results in the film’s higher conductivity. Meanwhile, ALD-grown TaNx film with a N2+H2 mixed gas or sputtergrown TaNx film with N2 gas mainly contains a semiconducting Ta3N5 bond. Such a different portion of Ta-N and Ta3N5 bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.
        4,000원
        33.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        정삼투법을 이용한 해수담수화는 역삼투 공정에 비해 에너지 절감이 가능하여 해수담수화 차세대 기술로 주목받 고 있다. 막을 기반으로 하는 수처리 분야에서 분리 성능을 향상시키고 새로운 기능을 부여하기 위해, 고분자 매트릭스에 필 러인 나노물질을 삽입하는 박막 나노복합체 분리막(thin film nanocomposite, TFN) 개발에 대한 연구가 요구되고 있다. 본 연구에서는 딥 코팅(dip coating) 방법을 기반으로 한 다층박막적층법(Layer-by-layer, LBL)을 이용하여 산화그래핀(graphene oxide, GO)의 나노 적층구조를 제어하여, 정삼투 공정에서의 높은 안정성 및 높은 수투과도 및 염 제거, 낮은 염 역확산을 갖는 그래핀 나노복합체 분리막을 개발하고자 하였다. 정삼투 공정의 성능 향상을 위한 산화그래핀의 환원 반응시간과 LBL 딥 코팅 적층 수의 최적화를 통해, 수투과도 2.51 LMH/bar, 물분자 선택성 8.3 L/g, 염 제거율 99.5%를 갖는 나노복합체 분리막 을 개발하였다. 이는 상용화된 CTA FO 분리막보다 수투과도는 10배, 물분자 선택성은 4배 높게 향상되었으며, 염 제거율은 비슷한 수준으로 나타났다.
        4,000원
        34.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The design and fabrication of photoelectrochemical (PEC) electrodes for efficient water splitting is important for developing a sustainable hydrogen evolution system. Among various development approaches for PEC electrodes, the chemical vapor deposition method of atomic layer deposition (ALD), based on self-limiting surface reactions, has attracted attention because it allows precise thickness and composition control as well as conformal coating on various substrates. In this study, recent research progress in improving PEC performance using ALD coating methods is discussed, including 3D and heterojunction-structured PEC electrodes, ALD coatings of noble metals, and the use of sulfide materials as co-catalysts. The enhanced long-term stability of PEC cells by ALD-deposited protecting layers is also reviewed. ALD provides multiple routes to develop improved hydrogen evolution PEC cells.
        4,000원
        35.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanofibers (CNF) are widely used as active agents for electrodes in Li-ion secondary battery cells, supercapacitors, and fuel cells. Nanoscale coatings on CNF electrodes can increase the output and lifespan of battery devices. Atomic layer deposition (ALD) can control the coating thickness at the nanoscale regardless of the shape, suitable for coating CNFs. However, because the CNF surface comprises stable C–C bonds, initiating homogeneous nuclear formation is difficult because of the lack of initial nucleation sites. This study introduces uniform nucleation site formation on CNF surfaces to promote a uniform SnO2 layer. We pretreat the CNF surface by introducing H2O or Al2O3 (trimethylaluminum + H2O) before the SnO2 ALD process to form active sites on the CNF surface. Transmission electron microscopy and energy-dispersive spectroscopy both identify the SnO2 layer morphology on the CNF. The Al2O3-pretreated sample shows a uniform SnO2 layer, while island-type SnOx layers grow sparsely on the H2Opretreated or untreated CNF.
        4,000원
        36.
        2017.11 구독 인증기관·개인회원 무료
        As ZIF materials have their unique properties such as high surface area, tunable pore structure, thermal and chemical stability, they can be used in various applications including gas separation and catalysis. For synthesis of ZIF membranes, fixing sub-micron ZIF seed particles on the support is challenging and important. In this work, ZIF-8 seed layer was synthesized by conversion synthesis of ZnO layer on support in H-mIm solution, followed by the secondary growth synthesis of ZIF-8 membranes. The parameters of conversion seeding had been investigated to control the reaction rate combining the dissolution rate of ZnO and the crystallization rate of ZIF-8. This ZIF-8 membranes showed the better coverage of seeding layer and improved gas separation properties compared with the membranes prepared by traditional dip-coating seeding method.
        38.
        2017.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated the effect of ZnO buffer layer on the formation of ZnO thin film by ultrasonic assisted spray pyrolysis deposition. ZnO buffer layer was formed by wet solution method, which was repeated several times. Structural and optical properties of the ZnO thin films deposited on the ZnO buffer layers with various cycles and at various temperatures were investigated by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence spectrum analysis. The structural investigations showed that three-dimensional island shaped ZnO was formed on the bare Si substrate without buffer layers, while two-dimensional ZnO thin film was deposited on the ZnO buffer layers. In addition, structural and optical investigations showed that the crystalline quality of ZnO thin film was improved by introducing the buffer layers. This improvement was attributed to the modulation of the surface energy of the Si surface by the ZnO buffer layer, which finally resulted in a modification of the growth mode from three to two-dimensional.
        4,000원
        39.
        2017.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We performed temperature dependent current-voltage (I-V) measurements to characterize the electrical properties of Au/Al2O3/n-Ge metal-insulator-semiconductor (MIS) diodes prepared with and without H2O prepulse treatment by atomic layer deposition (ALD). By considering the thickness of the Al2O3 interlayer, the barrier height for the treated sample was found to be 0.61 eV, similar to those of Au/n-Ge Schottky diodes. The thermionic emission (TE) model with barrier inhomogeneity explained the final state of the treated sample well. Compared to the untreated sample, the treated sample was found to have improved diode characteristics for both forward and reverse bias conditions. These results were associated with the reduction of charge trapping and interface states near the Ge/Al2O3 interface.
        4,000원
        40.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        천연색소는 색을 발현할 수 있는 물질로서 식품, 화장품, 의약품 등에 사용된다. 천연색소는 동・식물에서 추출하여 만들기 때문에 크기가 균일하지 않으며 특히 적색색소의 경우, 다른 색의 색소 에 비해 친유성이 강해 수용액 상태에서 쉽게 응집이 되는 경향이 있다. 또한 응집에 의한 크기변화로 인해 색의 재현이 어려운 문제점이 있다. 적색색소로 기존에 사용했던 동물성 색소인 코치닐 추출 색 소는 알레르기를 유발하고 식용으로서의 거부감이 있는 등의 문제점으로 인하여 사용이 기피되는 추 세이다. 본 연구에서는 적색의 식물성 색소인 라이코펜 추출물과 치자황색소를 사용하였고 Ball-milling을 이용하여 색소의 크기를 균일하게 만든 후 Asymmetrical flow field-flow fractionation(AsFlFFF), Dynamic light scattering(DLS)를 이용하여 크기를 분석하고 색차계를 이용하 여 색을 확인하는 연구를 진행하였다. 실험결과 milling 전에는 색소 입자의 크기가 크고 크기분포가 넓었으나, milling 후에는 크기가 감소하고 크기분포가 좁아짐을 확인하였다. 색차계 측정 결과, milling 시간이 증가함에 따라 밝기, 적색도, 황색도가 높아져서 밝은 적색을 나타내었다.
        4,000원
        1 2 3 4 5