검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        With South Korea increasingly focusing on nuclear energy, the management of spent nuclear fuel has attracted considerable attention in South Korea. This study established a novel procedure for selecting safety-relevant radionuclides for long-term safety assessments of a deep geological repository in South Korea. Statistical evaluations were performed to identify the design basis reference spent nuclear fuels and evaluate the source term for up to one million years. Safety-relevant radionuclides were determined based on the half-life criteria, the projected activities for the design basis reference spent nuclear fuel, and the annual limit of ingestion set by the Nuclear Safety and Security Commission Notification No. 2019-10 without considering their chemical and hydrogeological properties. The proposed process was used to select 56 radionuclides, comprising 27 fission and activation products and 29 actinide nuclides. This study explains first the determination of the design basis reference spent nuclear fuels, followed by a comprehensive discussion on the selection criteria and methodology for safety-relevant radionuclides.
        4,500원
        2.
        2023.11 구독 인증기관·개인회원 무료
        In order to ensure the long-term safety of a deep geological repository, the performance assessment of the Engineered Barrier System (EBS) considering a thermal process should be performed. The maximum temperature at the side wall of a disposal canister for the technical design requirement should not exceed 100°C. In this study, the thermal modelling was conducted to analyze the effects of the thermal process from a disposal canister to the surrounding near-field host rock using the PFLOTRAN code. The mesh was generated using the LaGriT code and the material properties were assigned by applying the FracMan code. Initial conditions were set as the average geothermal gradient (25.7°C/km) and an average surface temperature (14.7°C) in Korea. The highest temperature was observed at the middle of the canister side wall. The temperature of the buffer was lower than that of the canister, and the temperature increase of the deposition tunnel and the host rock was insignificant due to the lower effect of the heat source. The result of the thermal evolution of the EBS represented the highest thermal effects in the vicinity of the canister. In addition, the thermal effects were largely decreased after 10 years of the entire simulation period. It demonstrated that the model took 3 years to heat up the buffer around the canister. The temperature at the canister side wall increased until 3 years and then decreased after that time. This is because that the radioactive decay heat from the heat source was emitted enough to raise the overall temperature of the EBS by 3 years. However, the decay heat rate of the canister decreased exponentially with the disposal time and then its decay heat was not emitted enough after 3 years. In conclusion, the peak temperature results of the EBS were lower than 70°C to meet the technical design requirement.
        3.
        2023.05 구독 인증기관·개인회원 무료
        To prevent the release of radionuclides into the biosphere, disposal facilities for radioactive waste should be located to provide isolation from the accessible biosphere for tens of thousands to a million years after closure. During the period of interest, the constantly evolving natural environment and possible geological events of the site can cause disturbances to the containment function of the repository. Thus, for the long-term safety assessment of the repository, the possible long-term change of natural barrier should be considered. Due to the characteristics of radionuclides that transport mainly through the groundwater, understanding the long-term evolution of groundwater flow and geochemical properties is essential to assess the long-term changes in the natural barrier performance. The changes in characteristics of natural rocks and geological structures are one of the main factors that determine the hydrological and geochemical characteristics of the deep underground. In this study, we plan to develop a methodology to estimate these future geological evolutions in order to assess the possibility of hazardous events of the site that can affect hydrological or geochemical properties over the period of interest, and also in order to verify the change in the geological environment is within the safe performance range even after the period of interest. However, it is very unreliable to predict future changes in the natural environment because it is very heterogeneous, complex, and difficult to observe directly. For the preliminary study of the project, we reviewed cases of future evolution prediction researches with regard to the geological environment of disposal site and methods they applied to reduce the uncertainty of the prediction. The results will be used to establish basic data for future studies on the long-term evolution of hydraulic-mechanics performance of natural barrier and long-term evolution of geochemical performance around KURT site. In addition, it can contribute to construct long-term evolution scenario of the geological environment around future URL site.
        4.
        2022.05 구독 인증기관·개인회원 무료
        The timescale for the post-closure safety assessment of a deep geological repository ranges from ten thousand to a million year. In such a long period of time, the biosphere inevitably undergoes changes. Therefore, the long-term evolution of a biosphere is recognized as an important issue in the post-closure safety assessment of a deep geological repository for spent fuels. In this study, we reviewed the approaches to address the long-term evolution of a biosphere. The major drivers of longterm evolution of a biosphere are the climate change and the resulting landscape development. They can affect the hydrogeological and hydrogeochemical characteristics of a biosphere, and then the radionuclide migration through the biosphere followed by the exposure doses for the critical groups. In addition, human activities and the social developments can affect the climate change resulting in the long-term evolution of a biosphere. To make a biosphere assessment, the long-term evolution scenarios for the biosphere should be formulated considering these climate change, landscape development, and human activities. In addition, features, events, and processes (FEPs) that affect the long-term evolution of a biosphere should be used. According to the Safety Case reports of Finland, the major long-term evolution scenario drivers of a biosphere are local sea-level change due to climate change and land use related to crop type, irrigation procedures, livestock, forest management, construction of a well, and demographics. The climate change causing the local sea-level change can be simulated using various earth system models such as CLIMBER-2, MPI/UW, and UVic and an icesheet model such as SICOPOLIS. The review results of this study and FEPs related to the climate change, the landscape development, and human activities will be used to formulate long-term evolution scenarios for the safety assessment of a deep geological repository for spent fuels.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Deep geologic repositories (DGR) are designed to store spent nuclear fuel and to isolate it from the biosphere for an extended period of time as long as millions of years. The long-term performance of the DGR replies on the performance of the natural geologic barriers after the end of the lifetime for the engineered barrier systems. Typically, multiple analytical and numerical models are used to analyze and ensure the safety of the repositories along both engineered and natural barrier systems. Despite the immense advancement in computing power and modeling techniques over the last few decades, a series of models and their linkage often require many simplifying assumptions in this safety assessment. The degree of the reliability and confidence of the safety analysis is thus highly dependent on the validity of those tools used. Considering the significance of the DGR performance and public attention, the highest level of quality control is necessary for the models employed in the assessment. The performance of the ultimate long-term geologic barrier is determined by the expected travel time of the radioactive species of interest, the level of their dilution or radioactivity at compliance areas, and the uncertainty associated with them. As the species of interest can be carried away from the repository location by groundwater flow, the travel time is determined by groundwater velocity along the flow path from source to biosphere while the dilution is a function of the decay and production rates as well as the diffusion and dispersion. Due to the time scale and the complexity of the physicochemical processes and geologic media involved, the models used for safety evaluation will need to become more and more comprehensive, robust, and efficient which is difficult to achieve in principle. They will also need to be transparent and flexible to satisfy the regulatory quality control requirements. This study thus attempts to develop an accessible, transparent, and extensible integrated hydrologic models (IHM) which can be widely accepted by the regulators as well as scientific community and thus suitable for current and future safety assessment of the DGR systems. The IHM can be considered as a tool and a framework at the same time when it is designed to easily accommodate additional processes and requirements for the future as it is necessary. The IHM is capable of handling the atmospheric, land surface, and subsurface processes for simultaneously analyzing the regional groundwater driving force and deep subsurface flow, and repository scale safety features, providing an ultimate basis for seamless safety assessment in the DGR program. The applicability of the IHM to the DGR safety assessment is demonstrated using simple illustrative examples.
        6.
        2022.05 구독 인증기관·개인회원 무료
        Disposal facilities for radioactive waste shall be sited to provide isolation from the accessible biosphere. The features shall aim to provide this isolation for tens of thousands to a million years after closure. For the safety assessments of repository, the long-term natural evolution and possible events of the site, that can cause disturbances to the facility over the period of interest, should be considered. Geological development processes that the site have been experienced can contribute to understanding and descripting the present-day conditions. Moreover, knowledge of the past is necessary to predict the future evolution of the site. With regard to disposal site, understanding past geological evolution history allows to access the possibility of hazardous events of the site that can cause disturbances to the facility over the period of interest, and to verify the change in the geological environment is within the safe performance range even after the period of interest. In addition, certain parameters that change with the geological evolution can affect the hydrological and geochemical characteristics which are essential to disposal performance. There are various factors in the evolution of the geological environment, but not all are related to disposal safety. The objective of this research is to develop a geological reconstruction method considering factors that should be derived preferentially for the geological characteristics of the disposal site and the evaluation of the long-term safety. As a preliminary study on this, we investigated case studies related to geological reconstruction of overseas disposal research institutes, and reviewed which factors are suitable for the domestic granitoid distribution environment. It is expected that systematic and consistent results will be possible in the future through this methodology.
        7.
        2022.05 구독 인증기관·개인회원 무료
        The conventional research trend on spent fuel was safety analysis based on mechanical perspective. Analysis of spent fuel cladding is based on the temperature of cladding and pressure inside cladding. To improve fuel cladding analysis, precise and accurate thermal safety evaluation is required. In this study a database which is about thermal conductivity and emissivity for the thermal modeling was established for a long-term safety analysis of spent fuel. As a result, we confirmed that the thermal conductivity of zirconium hydride was not accounted in conventional model such as FRAPCON and MATPRO. The conductivity of zirconium and its oxide was evaluated only as a function of temperature. However, the behavior of heat conductivity and emissivity is determined by the change of the material properties. The material properties depend on the microstructural characteristic. It can be seen that this conventional approach does not consider the microstructure change behavior according to vacuum drying process or burn-up induced degradation phenomena. To improve the thermal properties of spent nuclear fuel cladding, the measurement experiments of heat conduction and emissivity are required according to spent fuel experience and status such as the number of vacuum drying, cooling rate, burn up, hydrogen concentration and oxidation degree. In previous domestic reports and papers, we found that relative data between thermal properties and spent fuel experience and status does not exist. Recently, in order to understand the failure mechanism of hydrogen embrittlement, many studies have been conducted by accounting and spent fuel experience and status in a mechanical perspective. If microstructure information could be obtained from these studies, the modeling of thermal conductivity and emissivity will be possible indirectly. According to a recent abroad paper, it was confirmed that the thermal conductivity decreased by about 30% due to irradiation damage. The radiation damage effects on thermal conductivity also has not been studied in zirconium oxide and hydride. These un-revealed phenomena will be considered for the thermal safety model of spent fuel.
        12.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Korea Atomic Energy Research Institute (KAERI) has developed geological repository systems for the disposal of high-level wastes and spent nuclear fuels (SNFs) in South Korea. The purpose of the most recently developed system, the improved KAERI Reference Disposal System Plus (KRS+), is to dispose of all SNFs in Korea with improved disposal area efficiency. In this paper, a system-level safety assessment model for the KRS+ is presented with long-term assessment results. A system-level model is used to evaluate the overall performance of the disposal system rather than simulating a single component. Because a repository site in Korea has yet to be selected, a conceptual model is used to describe the proposed disposal system. Some uncertain parameters are incorporated into the model for the future site selection process. These parameters include options for a fractured pathway in a geosphere, parameters for radionuclide migration, and repository design dimensions. Two types of SNF, PULS7 from a pressurized water reactor and Canada Deuterium Uranium from a heavy water reactor, were selected as a reference inventory considering the future cumulative stock of SNFs in Korea. The highest peak radiological dose to a representative public was estimated to be 8.19×10-4 mSv‧yr-1, primarily from 129I. The proposed KRS+ design is expected to have a high safety margin that is on the order of two times lower than the dose limit criterion of 0.1 mSv‧yr-1.
        4,500원
        17.
        2013.04 서비스 종료(열람 제한)
        Long-term monitoring system is becoming the center of interest in a field of diagnosis in building structures. Existing measuring systems had many problems such as measuring data is not the absolute value but the relative, and the durability performance of system itself is not enough to use it in building site. FBG optical sensor has many merits to overcome the existing sensor's demerits. In the study, FBG optical sensors encased in concrete were tested and analyzed to evaluate its measurement performance for applying it as a long-term load and displacement monitoring system in high-rise buildings.