검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        3.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Smart materials capable of changing their characteristics in response to stimuli such as light, heat, pH, and electric and magnetic fields are promising for application to flexible electronics, soft robotics, and biomedicine. Compared with conventional rigid materials, these materials are typically composed of soft materials that improve the biocompatibility and allow for large and dynamic deformations in response to external environmental stimuli. Among them, smart magnetic materials are attracting immense attention owing to their fast response, remote actuation, and wide penetration range under various conditions. In this review, we report the material design and fabrication of smart magnetic materials. Furthermore, we focus on recent advances in their typical applications, namely, soft magnetic actuators, sensors for self-assembly, object manipulation, shape transformation, multimodal robot actuation, and tactile sensing.
        4,000원
        5.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we fabricated Nd2Fe14B hard magnetic powders with various sizes via spray drying combined with reduction-diffusion process. Spray drying is widely used to produce nearly spherical particles that are relatively homogeneous. Thus, the precursor particles were prepared by spray drying using the aqueous solution containing Nd salts, Fe salts and boric acid with the target stoichiometric composition of Nd2Fe14B. The mean particle sizes of the spray-dried powders are in the range from one to seven micrometer, which are adjusted by controlling the concentra- tions of precursor solutions. After debinding the as-prepared precursor particles, ball milling was also conducted to con- trol the particle sizes of Nd-Fe-B oxide powders. The resulting particles with different sizes were subjected to subsequent treatments including hydrogen reduction, Ca reduction and washing for CaO removal. The size effect of Nd-Fe-B oxide particles on the formation of Nd2Fe14B phase and magnetic properties was investigated.
        4,200원
        6.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetic and dielectric properties of rubber composites are controlled by using two kinds of high-permeability metal particles with different electrical conductivity (Sendust, Permalloy), and their effect on microwave absorbance has been investigated, focusing on the quasi-microwave frequency band (0.8-2 GHz). Noise absorbing sheets are composite materials of magnetic flake particles of high aspect ratio dispersed in polymer matrix with various filler amount of 80-90 wt.%. The frequency dispersion and magnitude of complex permeability is almost the same for Sendust and Permalloy composite specimens. However, the complex permittivity of the Permalloy composite (, ) is much greater than that of Sendust composite (, ). Due to the large dielectric permittivity of Permalloy composite, the absorbing band is shifted to lower frequency region. However, the investigation of impedance matching reveals that the magnetic permeability is still small to satisfy the zero-reflected condition at the quasi-microwave frequency band, resulting in a small microwave absorbance lower than 10 dB.
        3,000원
        7.
        2006.09 구독 인증기관·개인회원 무료
        In the paper, the influence of different particle size D:D>125μm, D<50μm and between on magnetic properties of a standardized dielectromagnetic is presented. The tests were taken at frequencies of between 50Hz, and 500Hz. Presented in the paper results provide important materials property data to allow the selection of the most appropriate dielectromagnetic particle size for different applications.
        8.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanoparticles of iron oxides have been prepared by the levitational gas condensation (LGC) method, and their structural and magnetic properties were studied by XRD, TEM and Mossbauer spectroscopy. Fe clusters were evaporated from a surface of the levitated liquid Fe droplet and then condensed into nanoparticles of iron oxide with particle size of 14 to 30 nm in a chamber filled with mixtures of Ar and gases. It was found that the phase transition from both - and -Fe to , which was evaluated from the results of Mossbauer spectra, strongly depended on the flow rate. As a result, - was synthesized under the flow rate of 0.1(Vmin)0.15, whereas was synthesized under the , flow rate of 0.15(Vmin)0.2.
        4,000원
        9.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanoparticles of with a mean particle size of 4-30 nm have been prepared by a pulsed wire evaporation method, and its structural and magnetic properties were studied by SQUID magnetometer and Mossbauer spectroscopy. From the main peak intensity of XRD and absorption rate of Mossbauer spectrum, the amounts of and in as-prepared sample are about 70% and 30%, respectively. The coercivity (53 Oe) and the saturation magnetization (14 emu/g) are about 20% of those of the bulk . The low value of coercivity and saturation magnetization indicate that the phase nearly shows the spin glass-like behavior. Analysis of the set of Mossbauer spectrum indicates a distribution of magnetic hyperfine fields due to the particle size distribution yielding 20 nm of average particle size. The magnetic hyperfine parameters are consistent with values reported of bulk and . A quadrupole line on the center of spectrum represents of superparamagnetic phase of with a mean particle size of 7 nm or below.
        4,000원
        11.
        1993.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        침상의 괴타이트 합성조건을 구하고 Co/가스에 의한 침탄법으로 Fe3C 단상을 얻을 조건을 구하여 그 자기적 특성을 조사한 결과 침상의 괴타이트는 공기 유입량을 1500ml/min, 반응온도 50˚C의 조건하에서 교반속도 500rpm, pH 12.0 이상에서 이상적인 분말을 합성할 수 있었으며 교반속도가 증가할수록 미세하고 입도 분포도 좁고 균일하였다. 탄화반응은 유리탄소를 방지하기 위하여 CO가스와 N2가스를 1:2로 혼입하였으며 550˚C, 60min. 이상의 반응조건하에서 Fe3C단상의 포화자화값은 탄화반응 온도에 관계없이 100/emu/g으로 일정하였으며 보자력은 780 에서 400Oe까지, 각형비는 0.35에서 0.13까지 탄화잔응 온도가 증가할수록 감소하였다.
        4,000원
        12.
        2010.06 KCI 등재 서비스 종료(열람 제한)
        금번 연구에서는 2009년 1월 1일부터 12월 31일 사이에 대전광역시 유성구 지역에서 확보한 강수 시료를 대상으로 강수에 의한 오염 희석 규명을 시도하였다. 강수여과물에 대해 등온잔류자화(Isothermal remanent magnetization) 측정과 현미경 분석 및 정성적인 화학 성분 분석을 실시하였다. 비강수일에 포집한 먼지 시료와 황사발생일에 채취한 먼지 시료도 비교를 위해 실험에 사용하였다. 자화특성 실험과 현미경 관찰 결과를 바탕으로 판단하면, 강수에서 여과된 고체 시료에 존재하는 자성 물질은 자철석이다. 관찰된 자성 물질의 특이한 형태(구형/타원체형)와 탄소 함유를 고려하면, 인위적인 연소에 의해 형성된 자철석이라 해석된다. 강수에서 여과된 고체 시료의 등온잔류자화는 일반 먼지보다도 낮고 황사에 비해서는 현저히 낮은데, 이는 강수에 의해 발생하는 상당한 양의 자성물질 희석 효과라 판단된다.