검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 754

        61.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single facecentered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength–ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.
        5,500원
        62.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 채소정식을 위한 정식기에 사용하는 생분해성 포트를 개발하기 위하여 생분해성 첨가제의 비율에 따라 포트의 물성 및 식물의 생장 차이를 구명하였다. 본 실험에 사용된 생분해포트의 주원료는 크라프트지와 신문고지였고, 생분해성 포트는 주 배합비에서 내첨첨가제의 함량을 주원료 대비 각 3%, 5%로 제조하였다. 본 실험에서 8주 육묘 후 포트의 물리적 특성과 첨가제에 따른 변화를 알아보기 위해 포트의 인장강도, 두께, 무게 등을 조사하였다. 생분해성 첨가제가 함유된 포트와 일반 PE포트에 식물 생장도 비교하였다. 2주차에서 5주차에는 매주 배추의 생육조사를 진행했고, 5주차에서 8주차에는 고추생육조사를 진행하였다. 식물의 생장은 뿌리신선중(g), 지상부 시선중(g), 옆 장(cm), 옆 폭(cm)등을 측정하였다. 생분해성 포트에서의 식물 생장은 플라스틱 포트에 비해 생육이 저조하게 나타났다. 생분해성 포트의 무게와 두께는 첨가제 함량에 따라 낮은 상관성을 보였지만, 인장강도의 경우 차이를 보여 내첨제의 비율에 따라 생육에 영향을 미치는 것으로 나타났다. 그러나 첨가제는 무게와 두께에는 영향을 미치지 않아 포트의 생분해 능력에는 영향이 없는 것으로 판단된다. 본 연구는 생분해성 식물 포트 개발의 기초자료가 될 것으로 기대된다.
        4,000원
        67.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs) with different tube diameters using density functional theory (DFT) and molecular dynamics (MD) simulation, respectively. The carbon nanotubes’ electronic properties were derived from the index number ( n 1 , n 2 ), lattice vectors, and the rolled graphene sheet orientation. For (6,1) SWCNT, ( n 1-n 2)/3 is non-integer, so the expected characteristic is semiconducting. We have considered (6,1) Chiral SWCNT with different diameters ‘d’ (4.68 Å, 4.90 Å, 5.14 Å, 5.32 Å, 5.53 Å) corresponds to respective bond lengths ‘  ’ (1.32 Å, 1.38 Å, 1.45 Å, 1.50 Å and 1.56 Å) and then analyze the electronic properties from the Linear Combination of Atomic Orbitals (LCAO) based on DFT. We have used both the DFT-1/2 and GGA exchange energy correlation approximations for our calculation and compared the results. In both cases, the energy bandgap is decreasing order with the increase in bond lengths. The lowest value of formation energy was obtained at the bond length  = 1.45 Å ( d = 5.14 Å). For the mechanical properties, we have calculated Young’s modulus using molecular dynamics (MD) simulations. From our calculation, we have found that the (6,1) SWCNT with bond length 1.45 Å ( d = 5.14 Å) has Young’s modulus value of 1.553 TPa.
        4,000원
        68.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061/AA5052 layered sheet. Two AA6061 and one AA5052 sheets of 2mm thickness, 40mm width and 300mm length are alternately stacked, then reduced to a thickness of 2.0 mm by multi-pass cold rolling after surface treatment such as degreasing and wire brushing. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at a rolling speed of 6.0 m/sec. The roll-bonded AA6061/AA5052/AA6061/AA5052 layered sheet is then hardened by natural aging (T4) and artificial aging (T6) treatments. The microstructure of the as-roll bonded and the age-hardened Al sheets was revealed by SEM observation; the mechanical properties were investigated by tensile testing and hardness testing. After T4 and T6 aging treatment, the specimens had a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 regions. The as-roll-bonded specimen showed a clad structure in which the hardness of AA5052 regions was higher than that of AA6061 regions. However, after T4 and T6 aging treatment, specimens exhibited different structures, with hardness of AA6061 regions higher than that of AA5052 regions. Strengths of T6 and T4 age-treated specimens were found to increase by 1.55 and 1.36 times, respectively, compared to the value of the starting material.
        4,000원
        69.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Reheat treatment process of mold is necessary when partial machining of the mold is required, such as shape correction for an existing mold. If defects such as cracks or significant deterioration of mechanical properties of the mold occur during reheat treatment, it is impossible to reuse the mold. In this study, reheat treatment was performed up to two times for STD11 tool steel, and microstructure and mechanical properties according to the reheat treatment were evaluated. Carbide fraction and grain size of prior austenite were almost unchanged after the reheat treatment. Hardness and impact toughness increased significantly after QT treatment, and these properties were maintained without significant change even after the reheat treatment. It is concluded that up to two iterations of reheat treatment does not cause deterioration of properties of STD11 tool steel. Based on these results, a mold for a face-lifted front bumper was manufactured through machining and reheat-treating of an existing mold.
        4,000원
        70.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conversion to modern hydrogen energy is required, and research on liquefied hydrogen cargo containment systems is needed for large-capacity transport and storage. In this study, changes in the mechanical properties of the adhesive required for storage and transport in liquid hydrogen were confirmed. The lap shear test was performed by realizing cryogenic conditions in a small chamber using liquid nitrogen and liquid helium. There was an increase of 11.0% in the -180℃ condition compared to room temperature, and an increase of 1.8% in the -230℃ condition compared to the -180℃ condition was confirmed. In the case of shear strain, it is known that it decreases as the temperature goes down. As a result of the experiment, it was confirmed that the value at room temperature and the value at -180℃ reduced the shear strain by 5.0%, and -230˚ compared to the -180℃ condition. An increase of 1.5% was confirmed in the C condition. In the case of the specimen tested at -230℃, the deformation in the gripper part was larger than in other tests, and it is judged that the maximum shear strength and shear strain were affected. In addition, in this study, there is a limitation in the experiment at -230°C rather than 253°C, which is the boiling point of hydrogen
        4,000원
        71.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.
        4,000원
        72.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, the effect of Ni (0, 0.5 and 1.0 wt%) additions on the microstructure, mechanical properties and electrical conductivity of cast and extruded Al-MM-Sb alloy is studied using field emission scanning electron microscopy, and a universal tensile testing machine. Molten aluminum alloy is maintained at 750 oC and then poured into a mold at 200 oC. Aluminum alloys are hot-extruded into a rod that is 12 mm in diameter with a reduction ratio of 39:1 at 550 oC. The addition of Ni results in the formation of Al11RE3, AlSb and Al3Ni intermetallic compounds; the area fraction of these intermetallic compounds increases with increasing Ni contents. As the amount of Ni increases, the average grain sizes of the extruded Al alloy decrease to 1359, 536, and 153 μm, and the high-angle grain boundary fractions increase to 8, 20, and 34 %. As the Ni content increases from 0 to 1.0 wt%, the electrical conductivity is not significantly different, with values from 57.4 to 57.1 % IACS.
        4,000원
        73.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the following conclusions were obtained after friction stir welding of Al 6061-T651. 1) The organization of the welding unit is largely divided into four parts, the Stir zone, themal-mechanical affected zone, heat affected zone, it was confirmed that it is clearly separated into the material portion. 2) As a result of observing the hardness test results of the welding unit, the minimum hardness value was about 45Hv, which was significantly lower than the hardness of the base material about 72Hv. 3) The tensile strength of the welding part was about 2/3 compared to the tensile strength of the base material.
        4,000원
        74.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In modern times, where problems due to environmental pollution are continuously occurring, hydrogen is in the spotlight as the energy of the future. Hydrogen is an eco-friendly energy resource that does not even generate CO2, and is actively supporting research to utilize hydrogen energy at the national level. This study is a study on the cryogenic mechanical properties of the elements constituting the cargo hold during the transportation of liquid hydrogen. Among the various components, the evaluation of mechanical properties of the cryogenic adhesive under liquid helium conditions was confirmed. The related contents are summarized as follows. As a result of performing SSRT by curing the adhesive, it was confirmed that tensile strength and maximum strain were increased at cryogenic temperature (-230°C) compared to room temperature (25°C). It was confirmed that the adhesive-hardened specimen showed a brittle fracture mode at both room temperature and cryogenic temperature during tensile. Improvements in this study, such as pores occurring during adhesive curing, the use of standard specimens, and experiments at -253°C, the boiling point of hydrogen, exist, and are planned to be carried out in subsequent studies.
        4,000원
        75.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen is one of the main candidates in replacing fossil fuels in the forthcoming years. However, hydrogen technologies must deal with safety aspects due to the specific sub�stance properties. This study aims to provide an overview on the loss of mechanical properties of cryogenic materials, which may lead to serious consequences, such as fires and explosions. The hydrogen embrittlement of cryogenic steels was investigated through slow strain rate tensile tests (SSRTs) and thermal desorption analyses of electrochemically H-charged specimens. As a prior study to confirm mechanical properties under liquid hydrogen conditions, the amount of diffusive hydrogen that causes hydrogen embrittlement was confirmed after charging hydrogen using an electrochemical method for 4 types of steel materials applied as cryogenic materials did. When exposed to the same hydrogen charging conditions, the amount of hydrogen diffused into the 9% nickel steel is the highest compared to the austenitic steel type. It is considered that this is because the diffusion and integration of hydrogen into the interior is easy. It is necessary to analyze the relationship between hydrogen loading and mechanical properties, and this will be carried out in a follow-up study.
        4,000원
        76.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to evaluate the mechanical properties of ternary blended cement concrete incorporated with pulverized reject ash (PRA) or pulverized fuel ash (PFA) based on a comparison with those of ordinary Portland cement (OPC) concrete. METHODS : To produce the concretes, the level of OPC replacement is set at 60%, which comprises 30%~45% ground granulate blast furnace slag and 15%~25% of fly ash (FA). The FA can be categorized into PFA, 4PRA (fineness 3,930 cm2/g3), and 8PRA (fineness 7,840 cm2/g3). The compressive strength, surface electric resistivity, initial absorption coefficient, and chloride ion penetrability of OPC and the ternary blended cement concrete are measured at predetermined periods after water curing. RESULTS : It is discovered that the mechanical properties of concrete with 8PRA are better than those of OPC concrete. The performance of 4PRA concrete is worse than that of 8PRA concrete, indicating that the fineness of the PRA can affect the mechanical properties of the ternary blended cement concrete. CONCLUSIONS : The use of PRA is feasible for the production of ternary blended cement concrete, provided that the appropriate mix design and grinding technology are used.
        4,000원
        1 2 3 4 5