검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        1.
        2023.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The volatilization of alkali ions in (K,Na)NbO3 (KNN) ceramics was inhibited by doping them with alkaline earth metal ions. In addition, the grain growth behavior changed significantly as the sintering duration (ts) increased. At 1,100 °C, the volatilization of alkali ions in KNN ceramics was more suppressed when doped with alkaline earth metal ions with smaller ionic size. A Ca2+-doped KNN specimen with the least alkali ion volatilization exhibited a microstructure in which grain growth was completely suppressed, even under long-term sintering for ts = 30 h. The grain growth in Sr2+-doped and Ba2+-doped KNN specimens was suppressed until ts = 10 h. However, at ts = 30 h, a heterogeneous microstructure with abnormal grains and small-sized matrix grains was observed. The size and number of abnormal grains and size distribution of matrix grains were considerably different between the Sr2+-doped and Ba2+-doped specimens. This microstructural diversity in KNN ceramics could be explained in terms of the crystal growth driving force required for two-dimensional nucleation, which was directly related to the number of vacancies in the material.
        4,000원
        2.
        2022.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 oC (60 oCmin) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.
        4,000원
        3.
        2021.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrochemical reaction between lead borate glass frit doped with Sn metal filler and Ni-Cr wire of a J-type resistor during a term of Joule heating is investigated. The fusing behavior in which the Ni-Cr wire is melted is not observed for the control group but measured for the Sn-doped specimen under 30 V and 500 mA. The Sn-doped lead borate glass frit shows a fusing property compared with other metal-doped specimens. Meanwhile, the redox reaction significantly contributes to the fusing behavior due to the release of free electrons of the metal toward the glass. The electrons derived from the glass, which used Joule heat to reach the melting point of Ni-Cr wire, increase with increasing corrosion rate at interface of metal/ glass. Finally, the confidence interval is 95 ± 1.959 %, and the adjusted regression coefficient, R in the optimal linear graph, is 0.93, reflecting 93% of the data and providing great potential for fusible resistor applications.
        4,000원
        4.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The surface of silicon dummy wafers is contaminated with metallic impurities owing to the reaction with and adhesion of chemicals during the oxidation process. These metallic impurities negatively affect the device performance, reliability, and yield. To solve this problem, a wafer-cleaning process that removes metallic impurities is essential. RCA (Radio Corporation of America) cleaning is commonly used, but there are problems such as increased surface roughness and formation of metal hydroxides. Herein, we attempt to use a chelating agent (EDTA) to reduce the surface roughness, improve the stability of cleaning solutions, and prevent the re-adsorption of impurities. The bonding between the cleaning solution and metal powder is analyzed by referring to the Pourbaix diagram. The changes in the ionic conductivity, H2O2 decomposition behavior, and degree of dissolution are checked with a conductivity meter, and the changes in the absorbance and particle size before and after the reaction are confirmed by ultraviolet-visible spectroscopy (UV-vis) and dynamic light scattering (DLS) analyses. Thus, the addition of a chelating agent prevents the decomposition of H2O2 and improves the life of the silicon wafer cleaning solution, allowing it to react smoothly with metallic impurities.
        4,000원
        6.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Three kinds of STS304-Zr alloys were fabricated by varying the Zr content, and their microstructure and fracture properties were analyzed. Moreover, we performed heat treatment to improve their properties and studied their microstructure and fracture properties. The microstructure of the STS304-Zr alloys before and after the heat treatment process consisted of α-Fe and intermetallics: Zr(Cr, Ni, Fe)2 and Zr6Fe23. The volume fraction of the intermetallics increased with an increasing Zr content. The 11Zr specimen exhibited the lowest hardness and fine dimples and cleavage facets in a fractured surface. The 15Zr specimen had high hardness and fine cleavage facets. The 19Zr specimen had the highest hardness and large cleavage facets. After the heat treatment process, the intermetallics were spheroidized and their volume fraction increased. In addition, the specimens after the heat treatment process, the Laves phase (Zr(Cr, Ni, Fe) 2) decreased, the Zr6Fe23 phase increased and the Ni concentration in the intermetallics decreased. The hardness of all the specimens after the heat treatment process decreased because of the dislocations and residual stresses in α-Fe, and the fine lamellar shaped eutectic microstructures changed into large α-Fe and spheroidized intermetallics. The cleavage facet size increased because of the decomposition of the fine lamellarshaped eutectic microstructures and the increase in spheroidized intermetallics.
        4,000원
        10.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        iFLASH System is new structural floor system which consists of sandwich panels filled with nano-composite. The nano-composite has low specific gravity and high bonding strength with steel plates. The bonding strength is one of important factors for structural performance of iFLASH System and it can further be improved by surface preparation such as blast metal cleaning. However, using none blast steel plates is recommended since surface preparation generates additional fabrication time and cost. In this study, a bonding strength test and bending experiment were conducted to check feasibility of applying none blast steel plates to iFLASH System. Moreover, stress in bonding plane between steel plates and nano-composite was analytically evaluated by finite element method. Consequently, flexural capacity of the specimen was 11% higher than theoretically calibrated value and its flexural behavior was structurally efficient without defect of bonding.
        4,000원
        11.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the high temperature oxidation behavior of Ni-22.4%Fe-22%Cr-6%Al (wt.%) porous metal. Two types of open porous metals with different pore sizes of 30 PPI and 40 PPI (pore per inch) were used. A 24-hour TGA test was conducted at three different temperatures of , and . The results of the BET analysis revealed that the specific surface area increased as the pore size decreased from 30 PPI to 40 PPI. The oxidation resistance of porous metal decreased with decreasing pore size. As the temperature increased, the oxidation weight gain of the porous metal also increased. Porous metals mainly created oxides such as , , , and . In the 40 PPI porous metal with small pore size and larger specific surface area, the depletion of stabilizing elements such as Al and Cr occurred more quickly during oxidation compared to the 30 PPI porous metal. Ni-Fe-Cr-Al porous metal's high-temperature oxidation micro-mechanism was also discussed.
        4,000원
        12.
        2010.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.
        4,000원
        13.
        2008.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Growth behavior of InGaN/GaN self-assembled quantum dots (QDs) was investigated with respect to different growth parameters in low pressure metalorganic chemical vapor deposition. Locally formed examples of three dimensional InGaN islands were confirmed from the surface observation image with increasing indium source ratio and growth time. The InGaN/GaN QDs were formed in Stranski-Krastanow (SK) growth mode by the continuous supply of metalorganic (MO) sources, whereas they were formed in the Volmer-Weber (V-W) growth mode by the periodic interruption of the MO sources. High density InGaN QDs with 1~2nm height and 40~50nm diameter were formed by the S-K growth mode. Dome shape InGaN dots with 200~400nm diameter were formed by the V-W growth mode. InN content in InGaN QDs was estimated to be reduced with the increase of growth temperature. A strong peak between 420-460 nm (2.96-2.70 eV) was observed for the InGaN QDs grown by S-K growth mode in photoluminescence spectrum together with the GaN buffer layer peak at 362.2 nm (3.41 eV).
        4,000원
        14.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Wear of steel plate was measured during unlubricated sliding against TiC composites. These composites consist of round TiC grains and steel matrix. TiC grain itself exhibits low surface roughness and round shape, which does not bring its counterpart into severe damage from friction. In our work a classical experimental design was applied to find out a dominant factor in counterpart wear. The analysis of the data showed that only the applied load has a significant effect on the counterpart wear. Wear rate of counterpart increased non-linearly with applied load. Amount of wear was discrepant from expectation of being in proportion to the load by analogy with friction force. Our experimental result from treating matrix variously revealed bimodal wear behavior between the composites and counterpart where a mode seems to result from the special lubricant characteristic of TiC grains, and the other is caused by metal-to-metal contact. The two wear mechanisms were discussed.
        4,000원
        15.
        2006.04 구독 인증기관·개인회원 무료
        Densification behavior of various metal and ceramic powder was investigated under cold compaction. The Cap model was proposed based on the parameters obtained from axial and radial deformation of sintered metal powder compacts under uniaxial compression and volumetric strain evolution. For ceramic powder, the parameters were obtained from deformation of green powder compacts under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powder under cold compaction.
        19.
        1996.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구는 RF 마그네트론 스퍼터링법으로 제작한 1μm 두께의 Fe79Tb21 및 Fe62Co15Tb23 아몰퍼스합금 박막을 결정화함으로써 석출되는 결정상의 구조와 아몰퍼스합금의 구조와의 대응관계에 관한 기초정보를 도출하기 위하여 자화측정, DSC열분석 및 X선 회절측정 등을 행하였다. 소둔온도가 400˚C이상 증가하면 Fe79Tb21 및 Fe62Co15Tb23 아몰퍼스합금 박막의 용이자화방향이 시료면의 수직방향에서 면내방향으로 이행하였으며 열분석 측정결과, Fe79Tb21 박막의 결정화온도는 500-600˚C범위인 반면 Fe62Co15Tb23박막의 경우는 650˚C로 평가되었다. 또한, 이들 박막에 대한 열처리후의 X선 회절프로화일로부터 양시료 공히 Fe23Tb6 금속간 화합물 이외의 어떠한 금속간화합물도 석출되지 않음을 알 수 있었다.
        4,000원
        1 2