검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 35

        21.
        2018.10 서비스 종료(열람 제한)
        Background : Root rot is a major factors of replanting failure in ginseng cultivation. Some of the phenolics detected in the soil could inhibit the seed germination and seedling growth of ginseng. Methods and Results : Water of 2 ℓ was irrigated per pot (20 ℓ) into the soil infected with ginseng root rot pathogens for one month every day. After the irrigation treatment, the powder of ginseng fine root of 20 g per pot was mixed with the irrigated soil. NO3 -, electric conductivity (EC), exchangeable Na (Ex. Na) and K (Ex. K) were decreased in descending order by irrigation. NO3 -, EC, Ex. K, and available P2O5 were increased in descending order by incorporation of ginseng powder into soil. Trichoderma crassum was decreased by irrigation, but it was increased again by incorporation of powder. Haematonectria haematococca was increased by irrigation, but it was decreased by incorporation of powder. Cylindrocarpon spp. and Fusarium spp. causing ginseng root rot were increased by incorporation of powder. Arthrobacter oryzae and Streptomyces lavendulae were increased by irrigation. Streptomyces lavendulae was decreased, and Arthrobacter spp. was increased by incorporation of powder. Aerial growth of ginseng was promoted by irrigation, and ginseng root rot was increased by incorporation of powder. Conclusion : The residues of ginseng root in the soil affected soil nutrients and microorganisms, and promoted ginseng root rot, but did not affect the aerial growth of ginseng.
        22.
        2018.05 서비스 종료(열람 제한)
        하수처리과정에서 발생하는 슬러지의 부피를 줄이는 동시에 이들의 유기물 성분을 메탄 등의 바이오가스로 전환하기 위해 중온(35℃)에서의 혐기소화 공정이 널리 적용되고 있다. 혐기소화공정의 안정성이나 에너지 투입량 측면에서는 중온혐기소화가 적합하다고 알려져 있지만, 높은 유기물 부하량(organic loading rate, OLR)을 처리하기 위해 반응속도를 상승시키거나 SRT(sludge retention time)을 줄이기 위해 고온(55℃) 혐기소화를 적용하기도 한다. 고온 혐기소화공정을 새롭게 시작할 때 접종물을 기존의 고온 혐기소화공정으로부터 얻기 힘든 경우 중온혐기소화액을 고온에서 적응시켜 접종하기도 한다. 이때 온도를 적응시키는 방법에 따라 공정 효율이 달라지는데, 연구에서는 중온혐기소화액으로부터 고온 혐기소화 접종물을 제작하기 위한 방법으로 온도를 올리는 방법을 달리하였을 때 이들의 메탄 생산과 미생물 군집에 미치는 영향을 살펴보고자 하였다. 본 연구수행을 위해 광주 제 1 하수처리장에서 중온혐기소화액, 1, 2차 농축 슬러지 등을 샘플링 하여 두 대의 반응기(Working volume : 3L)를 설치하여 회분식(Batch)운전 후 연속교반탱크형반응기(CSTR)로 운전(SRT 20, 40일)하였다. 먼저 한 대의 반응기는 35℃에서 55℃로 한 번에 온도변화를 주었고, 다른 반응기의 경우에는 35℃에서 하루에 1도씩 올려서 약 20일에 걸쳐 55℃로 올린 뒤 55℃로 유지하였다. 반응기의 효율을 확인하기 위해 메탄 발생량, total solids (TS), volatile solids (VS), total chemical oxygen demand (tCOD), soluble chemical oxygen demand (sCOD), soluble components (protein, carbohydrate), pH 등을 측정하였으며, NGS (next generation sequencing)를 활용하여 혐기소화 전/후의 소화액의 미생물 군집변화를 알아보았다.
        23.
        2018.05 서비스 종료(열람 제한)
        Background : The continuous cropping of Cnidium officinale is a serious problem for the cultivation practices, which is an unelucidated subject. This study is concerned mainly with rhizosphere microbiome and meteological factors on the cause of physiological damage in the continuous cropping of Cnidium officinale. Methods and Results : Microbial population and community dynamics was evaluated with metagenomic DNA by IonTorrent PGM. Results of HPLC profiling revealed that metabolic components of symbiotic interaction with Cnidium officinale was not detected in cultivated soils. Proteobacteria groups such as nitrogen fixing bacteria, Pseudomonas and Burkholderia of rhizosphere soil in continuous cropped fields mainly decreased compared to the first cropped soil. Principle component analysis of bacterial community showed a significantly differentiated vector between first cropping field and continuous cropped fields. Although growth characteristics including height, leaf length, leaf diameter amd stem diameter etc., was not different with continuous cultivation year until mid-July, physiological damage was dramatically started from late July. Yield of Rhizoma in continuous cropped fields significantly decreased compared to first cropped field. Evapotranspiration of Cnidium officinale with lysimeter for summer season was evaluated. It showed high relationship between solar radiation and evapotranspiration with R2 = 0.7778 and 41% of solar radiation converted into evapotranspiration during 16 days. This result imply that evapotranspiration is mainly controlled by radiation energy in clear days. Water and heat cycle through evapotranspiration is suppose to be one of the important factors related with physiological disorder of Cnidium officinale. Conclusion : This result imply that physiological damage resulted from continuous cropping is involved in decrease of Proteobacteria at rhizosphere soils under stressed conditions.
        24.
        2017.05 서비스 종료(열람 제한)
        Background : The fungus Cylindrocarpon destructans (Zins) Scholten is the cause of root rot in many ginseng production areas. Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. Methods and Results : Five kinds of rotation crops, sudan grass soybean peanut sweet potato, perilla were grown for one year in ginseng garden harvested 6-year-old ginseng. The ratio of gram-negative bacteria, fungi, bacteria, total microbial biomass, aerobic/anaerobic microbes were increased by rotational crop cultivation, while the ratio of actinomycetes and the ratio of saturated to unsaturated fatty acids were decreased. The increase in the fungal density or the increase in the proportion of fungi to the bacteria tended to increase the incidence of root rot, but there was no significant difference. The yield of ginseng root showed a highly significant negative correlation with actinomycetes. The correlation between the soil chemical properties and the incidence of root rot was analyzed by cultivating 23 kinds of green manure crops for one year in field where cultivated ginseng continuously. The survival rate of ginseng showed a highly significant positive correlation with soil acidity and a highly significant negative correlation with nitrate nitrogen, and a significant negative correlation with soil salt concentration. Conclusion : Rotation crops improved soil microbial communities, lowered the rate of fungi and increased the proportion of bacteria, the survival rate of ginseng was significantly correlated with soil acidity, nitrate nitrogen and soil salinity.
        25.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        Background: Crop rotation plays an important role in improving soil chemical properties, minimizing the presence of disease pathogens, and assists in neutralizing autotoxic effects associated with allelochemicals. Methods and Results: Five rotation crops of sudan grass, soybean, peanut, sweet potato, and perilla were cultivated for one year with an aim to reduce yield losses caused by repeated cropping of ginseng. In 2-year-old ginseng grown in the same soil as a previous ginseng crop, stem length and leaf area were reduced by 30%, and root weight per plant was reduced by 56%. Crop rotation resulted in a significant decrease in electrical conductivity, NO3, and P2O5 content of the soil, whereas organic matter, Ca, Mg, Fe, Cu, and Zn content remained-unchanged. Soil K content was increased following crop rotation with sudan grass and peanut only. Rotation with all alternate crops increased subsequent ginseng aerial plant biomass, whereas root weight per plant significantly increased following crop rotation with perilla only. A significant positive correlation was observed between root rot ration and soil K content, and a significant negative correlation was observed between ginseng root yield and the abundance of actinomycetes. Crop rotation affected the soil microbial community by increasing gram negative microbes, the ratio of aerobic microbes, and total microbial biomass whereas decreases were observed in actinomycetes and the ration of saturated fatty acids. Conclusions: In soil exhibiting crop failure following replanting, crop rotation for one year promoted both soil microbial activity and subsequent ginseng aerial plant biomass, but did not ameliorate the occurrence of root rot disease.
        26.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        In this study, we compared disease incidence rate and phyllosphere microbial community between drought resistance transgenic rice (Agb0103) and non-transgenic Ilmi (NGM) during 2011-2014 to examine an environmental risk assessment of drought resistance transgenic rice (Agb0103). As the results, major diseases such as sheath blight, brown spot, leaf blast and false smut were occurred, however, there were no significant disease incidence rate between Agb0103 and NGM. As the results of counting bacterial and fungal viable cell, the colonies were increased or decreased which affected by environmental conditions, however there were no differences between Agb0103 and NGM. Also unweighted pair-group method with arithmetic averaging (UPGMA) analysis based on polymerase chain reaction with denaturing gel electrophoresis (PCR-DGGE) revealed that DGGE band pattern of bacterial and fungal communities were clustered by each month and there were no differences between Agb0103 and NGM. Furthermore, isolated casual agents causing sheath blight and brown spot were collected from Agb0103 and NGM, and they revealed that each of pathogens were no differences in morphology and pathogenicity. Therefore, our results suggested that Agb0103 showed no differences in disease incidence rate, characteristic of pathogens and phyllosphere community with NGM. In this way, it can be assumed that transgenic rice Agb0103 could not influence phyllosphere microorganism community and environmental conditions.
        27.
        2014.07 서비스 종료(열람 제한)
        Rice (Oryza sativa) is the most important staple food of over half the world’s population. This study was conducted to evaluate the possible impact of transgenic rice cultivation on the soil microbial community. Microorganisms were isolated from the rhizosphere of GM and non-GM rice cultivation soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with GM and non-GM rice were similar to each other, and there was no significant difference between GM and non-GM rice. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM rice were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in GM and non-GM rice cultivated soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed similar patterns, but didn’t show significant difference to each other. DNAs were isolated from soils cultivating GM and non-GM rice and analyzed for persistence of inserted gene in the soil by using PCR. The PCR analysis revealed that there were no amplified protox gene in soil DNA. These data suggest that transgenic rice does not have a significant impact on soil microbial communities, although continued research may be necessary.
        28.
        2013.07 서비스 종료(열람 제한)
        Rice (Oryza sativa) is the most important staple food of over half the world’s population. This study was conducted to evaluate the possible impact of transgenic rice cultivation on the soil microbial community. Microorganisms were isolated from the rhizosphere of GM and non-GM rice cultivation soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with GM and non-GM rice were similar to each other, and there was no significant difference between GM and non-GM rice. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM rice were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in GM and non-GM rice cultivated soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed similar patterns, but didn’t show significant difference to each other. DNAs were isolated from soils cultivating GM and non-GM rice and analyzed for persistence of inserted gene in the soil by using PCR. The PCR analysis revealed that there were no amplified protox gene in soil DNA. These data suggest that transgenic rice does not have a significant impact on soil microbial communities, although continued research may be necessary.
        29.
        2013.07 서비스 종료(열람 제한)
        The cultivation of genetically modified (GM) crops has increased due to their economic and agronomic advantages. Before commercialization of GM crops, however, we must assess the potential risks of GM crops on human health and environment. The aim of this study was to investigate the possible impact of Bt rice on the soil microbial community. Microbial communities were isolated from the rhizosphere soil cultivated with Bt rice and Nakdong, parental cultivar and were subjected to be analyzed using both culture-dependent and molecular methods. The total counts of bacteria, fungi, and actinomycetes in the rhizosphere of transgenic and conventional rice were not significantly different. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that the bacterial community structures during cultural periods were very similar each other. Analysis of dominant isolates in the rhizosphere cultivated with Bt and Nakdong rice showed that the dominant isolates from the soil of Bt rice and Nakdong belonged to the Proteobacteria, Cloroflexi, Actinobacteria, Firmicutes, and Acidobacteria. These results indicate that the Bt rice has no significant impact on the soil microbial communities during cultivation period. Further study remains to be investigated whether the residue of Bt rice effect on the soil environment.
        31.
        2011.04 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to compare the toxicity of nano and micrometer particles with Cu and Zn on soil microbial community and metal uptake of buck wheat. In microcosm system, soil was incubated for 14 days after soil aliquots were artificially contaminated with 1,000 mg/kg Cu, Zn nano and micro particles, respectively. After then, buck wheat was planted in incubating soils and non incubating soils. After 14 days, we compared bioaccumulation of metal, and microbial carbon substrate utilization patterns between incubating soils and non-incubating soils. The enrichment factor (EF) values of incubating samples were greater than non-incubating soils. Dehydrogenase activity had been inhibited by Cu and Zn nanoparticles in non-incubating soil, as well as it had been inhibited by Zn micro particles in incubating soils. Results of biolog test, it was not significant different between nano particles and micro particles. It cannot be generalized that nanoparticles of metal are always more toxic to soil microbial activity and diversity than micrometer-sized particles and the toxicity needs to be assessed on a case-by-case basis.
        32.
        2009.03 KCI 등재 서비스 종료(열람 제한)
        Lactobacillus sp., Acetobacter sp. and yeast were the most dominant organisms in the EM stock culture and subculture product. Lactic acid bacteria and yeast were able to grow in the fermentation process utilizing seawater. EM treatment of higher concentrations using EM stock culture and EM clay balls (1% or 4%) contributed to an early removal of malodor and an increase of DO in the polluted sediments, indicating an odor-removing activity of EM. The EM treatment of higher concentrations (1% or 4%) somewhat appeared to modify the microbial communities within the sediments, which was confirmed by existence of a few unique fragments from the stock culture based on PCR-DGGE. It still remains to be elucidated that EM cultures were directly involved in the malodor removal and potential sediment bioremediation.
        33.
        2005.04 KCI 등재 서비스 종료(열람 제한)
        Soil samples were collected from new-developed wetland soil ecosystem of Tamarix chinesis plantation in Chinese Yellow River Delta in different months of 2003. Soil characteristics, temporal change and spatial distribution of microbial community composition and their relationship with nitrogen turnover and circling were investigated in order to analyze and characterize the role of microbial diversity and functioning in the specific soil ecosystem. The result showed that the total population of microbial community in the studied soil was considerably low, compared with common natural ecosystem. The amount of microorganism followed as the order: bacteria> actinomycetes>fungi. Amount of actinomycetes were higher by far than that of fungi. Microbial population remarkably varied in different months. Microbial population of three species in top horizon was corrected to that in deep horizon. Obvious rhizosphere effect was observed and microbial population was significantly higher in rhizosphere than other soils due to vegetation growth, root exudation, and cumulative dead fine roots. Our results demonstrate that microbial diversity is low, while is dominated by specific community in the wetland ecosystem of Tamarix chinesi.
        34.
        2005.03 KCI 등재 서비스 종료(열람 제한)
        본 연구는 국가하천인 오산천에서 수행되었으며, 하천의 자정기능을 증대시키기 위해 부착미생물군집을 중심으로 하천에서 거동을 정량적으로 조사하였다. 하천현장에서 장기간에 걸친 모니터링을 통해 다음과 같은 결과를 도출하였다. 부착미생물군집의 현존량은 소보다는 여울구간에서 더 높았으며, 여울구간에서도 흐름 유속이 상대적으로 빠른 급여울지역에서 더 많았다. 또한, 부착미생물군집이 하상기질에 부착하는 초기에는 빠른 유속이 부착미생물군집의 증식에 부정적으로 작용하지
        35.
        2001.06 KCI 등재 서비스 종료(열람 제한)
        This research was performed to investigate the dynamics of microbial community by RBC (Rotating Biological Contactor) using Rhodococcus sp. EL-GT and activated sludge. Cell counts revealed by DAPI were compared with culturable bacterial counts from nutrient agar. Colony counts on nutrient agar gave values 20∼25% and 1∼15% of cell counts (DAPI). The cell counts for the dynamics of bacterial community were determined by combination of in situ hybridization with fluorescently-labelled oligonucleotide probes and epifluorescence microscopy. Around 90∼80% of total cells visualized by DAPI were also detected by the bacteria probe EUB 338. For both reactors proteobacteria belonging to the gamma subclass were dominant in the first stage (1 and 2 stage) and proteobacteria belonging to the gamma subclass were dominant in the last stage (3 and 4 stage).
        1 2