검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 543

        121.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 Ni - Al2O3로 구성된 금속-세라믹 이종 입자복합재의 2차원 미세구조(microstructure) 생성과 미세구조 스케일 (scale)에 따라 정의되는 계층적 모델들의 역학적 특성 분석에 관한 내용이다. 이종 입자복합재의 미세구조는 수학적인 RMDF(random morphology description functions) 모델링기법을 복합재의 2차원 RVE(representative volume element) 영 역에 적용하여 생성하였다. 그리고 미세구조 생성에 필요한 가우스 함수들의 개수에 따라 미세구조의 계층적 모델을 정의하였다. 한편 임의 미세구조 내 금속과 세라믹 입자가 차지하는 체적분율(volume fraction)은 RMDF 함수의 레벨을 조정함으로서 설정하였다. RMDF기법에 의한 미세구조들은 가우스 함수들의 개수가 일정할지라도 랜덤하게 생성된다. 이렇게 랜덤 하게 생성되는 미세구조들을 2차원 보(beam) 모델에 적용하여 미세구조의 스케일에 따른 수직응력과 전단응력의 계층적 변 동을 수치 해석적으로 고찰하였다. 또한, 균열해석을 통해 RMDF의 랜덤성과 가우스 함수들의 개수가 균열선단에서의 응력 값에 미치는 영향을 고찰하였다.
        4,000원
        123.
        2018.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of annealing temperature on the microstructure and mechanical properties through thickness of a Cu-3.0Ni- 0.7Si alloy processed by differential speed rolling are investigated in detail. The copper alloy with a thickness of 3 mm is rolled to a 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5 h at 200-900 oC. The microstructure of the copper alloy after annealing is different in the thickness direction depending on the amount of the shear and compressive strain introduced by the rolling; the recrystallization occurs first in the upper roll side and center regions which are largely shear-deformed. The complete recrystallization occurs at an annealing temperature of 800 oC. The grain size after the complete recrystallization is finer than that of the conventional rolling. The hardness distribution of the specimens annealed at 500-700 oC is not uniform in the thickness direction due to partial recrystallization. This ununiformity of hardness corresponds well to the amount of shear strain in the thickness direction. The average hardness and ultimate tensile strength has the maximum values of 250 Hv and 450 Mpa, respectively, in the specimen annealed at 400 oC. It is considered that the complex mode of strain introduced by rolling directly affects the microstructure and the mechanical properties of the annealed specimens.
        4,000원
        124.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Three kinds of STS304-Zr alloys were fabricated by varying the Zr content, and their microstructure and fracture properties were analyzed. Moreover, we performed heat treatment to improve their properties and studied their microstructure and fracture properties. The microstructure of the STS304-Zr alloys before and after the heat treatment process consisted of α-Fe and intermetallics: Zr(Cr, Ni, Fe)2 and Zr6Fe23. The volume fraction of the intermetallics increased with an increasing Zr content. The 11Zr specimen exhibited the lowest hardness and fine dimples and cleavage facets in a fractured surface. The 15Zr specimen had high hardness and fine cleavage facets. The 19Zr specimen had the highest hardness and large cleavage facets. After the heat treatment process, the intermetallics were spheroidized and their volume fraction increased. In addition, the specimens after the heat treatment process, the Laves phase (Zr(Cr, Ni, Fe) 2) decreased, the Zr6Fe23 phase increased and the Ni concentration in the intermetallics decreased. The hardness of all the specimens after the heat treatment process decreased because of the dislocations and residual stresses in α-Fe, and the fine lamellar shaped eutectic microstructures changed into large α-Fe and spheroidized intermetallics. The cleavage facet size increased because of the decomposition of the fine lamellarshaped eutectic microstructures and the increase in spheroidized intermetallics.
        4,000원
        125.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to increase the efficiency of the sputtering method widely used in thin film fabrication, a dc sputtering apparatus which supplies both high frequency and magnetic field from the outside was fabricated, and cobalt thin film was fabricated using this apparatus. The apparatus can independently control the applied voltage, the target-substrate distance, and the target current, which are important parameters in the sputtering method, so that a stable glow discharge is obtained even at a low gas pressure of 10−3 Torr. The fabrication conditions using the sputtering method were mainly performed in Ar+O2 mixed gas containing about 0.6% oxygen gas under various Ar gas pressures of 1 to 30 mTorr. The microstructure of Co thin films deposited using this apparatus was examined by electron diffraction pattern and X-ray techniques. The magnetic properties were investigated by measuring the magnetization curves. The microstructure and magnetic properties of Co thin films depend on the discharge gas pressure. The thin film fabricated at high gas pressure showed a columnar structure containing a large amount of the third phase in the boundary region and the thin film formed at low gas pressure showed little or no columnar structure. The coercivity in the plane was slightly larger than that in the latter case.
        4,000원
        126.
        2018.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of annealing temperature on the microstructure and mechanical properties through thickness of a cold-rolled Cu-3.0Ni-0.7Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5h at 200~900 oC. The microstructure of the copper alloy after annealing was different in thickness direction depending on an amount of the shear and compressive strain introduced by rolling; the recrystallization occurred first in surface regions shear-deformed largely. The hardness distribution of the specimens annealed at 500~700 oC was not uniform in thickness direction due to partial recrystallization. This ununiformity of hardness corresponded well with an amount of shear strain in thickness direction. The average hardness and ultimate tensile strength showed the maximum values of 250Hv and 450MPa in specimen annealed at 400 oC, respectively. It is considered that the complex mode of strain introduced by rolling effected directly on the microstructure and the mechanical properties of the annealed specimens.
        4,000원
        127.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a Fe-Fe3C structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.
        4,000원
        128.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        HiPIMS(High Power Impulse Magnetron Sputtering)를 이용하여 탄소 박막을 증착하였다. 파워, 압력, 바이어스 전압, duty cycle에 따른 탄소 박막의 특성과 미세조직을 조사하였다. HiPIMS 파워가 증가할수록 증착 두께는 증가하였으며 표면이 거칠어지는 경향을 보였다. 압력의 증가 또한 표면이 거칠어지는 경향을 보였으나 증착 두께는 압력에 비례하지 않았다. 바이어스 전압이 증가함에 따라 조도가 나빠졌고 증착 두께는 증가하다가 임계 바이어스 전압부터는 감소하는 경향을 보였다. 듀티 사이클의 변화는 아크 발생과 같은 문제를 유발했으며 이는 챔버 구조나 타겟의 크기 등에 영향을 받는다. XPS로 sp²/sp³ 분율을 확인하였으며 sp²/sp³ 분율이 DC 스퍼터링의 경우보다 HiPIMS의 경우가 더 큰 것을 확인하였다.
        4,000원
        129.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The use of continuous welded rail is increasing because of its many advantages, including vibration reduction, enhanced driving stability, and maintenance cost savings. In this work, two different types of continuous welded rails were examined to determine the influence of repeated wheel-rail contact on the crystal structure, microstructure and mechanical properties of the rails. The crystal structure was determined by x-ray diffraction, and the microstructure was examined using optical microscopy and scanning electron microscopy. Tensile and microhardness tests were conducted to examine the mechanical behaviors of prepared specimens taken from different positions in the cross section of both newly manufactured rail and worn rail. Analysis revealed that both the new and worn rail had a mixed microstructure consisting of ferrite and pearlite. The specimens from the top position of each rail exhibited decreased lamella spacing of the pearlite and increased yield strength, ultimate tensile strength and hardness, as compared with those from other positions of the rail. It is thought that the enhanced mechanical property on the top position of the worn rail might be explained by a mixed effect resulting from a directional microstructure, the decreased lamella spacing of pearlite, and work hardening by the repeated wheel-rail contact stress.
        4,000원
        131.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of α-ferrite and cementite(Fe3C) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of lowcarbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.
        4,000원
        132.
        2017.11 구독 인증기관·개인회원 무료
        본 연구에서는 물/에탄올 분리 성능이 우수한 모데나이트 제올라이트 분리막을 제조하였다. 모데나이트 분리막은 다공성 알루미나 지지체 표면에 종결정이 분산된 종결정 수용액을 이용하여 침지코팅한 후 1SiO2:0.05Al2O3: 0.76NaOH:40H2O 의 몰비로 제조된 수열용액을 이용하여 170°C에서 24시간 동안 이차성장 시켰다. 이때 종결정 수용액의 농도가 모데나이트 분리막의 미세구조 및 투과증발성능에 미치는 영향에 대하여 분석하였다. 종결정 수용액의 농도를 0.025, 0.05, 0.1, 0.25, 0.5 wt%로 한 후 합성한 경우, b축으로 성장된 바늘 구조의 모데나이트 결정은 농도가 증가할수록 c축으로 성장하는 것을 확인하였다. c축으로 성장 된 분리막의 물/에탄올 분리성능은 > 10000의 선택도와 0.2 kg/m2h의 투과도 를 나타냈다.
        134.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructural evolution and modulation of mechanical properties were investigated for a Ti65Fe35 hypereutectic alloy by addition of Bi53In47 eutectic alloys. The microstructure of these alloys changed with the additional Bi- In elements from a typical dendrite-eutectic composite to a bimodal eutectic structure with primary dendrite phases. In particular, the primary dendrite phase changed from a TiFe intermetallic compound into a β-Ti solid solution despite their higher Fe content. Compressive tests at room temperature demonstrated that the yield strength slightly decreased but the plasticity evidently increased with an increasing Bi-In content, which led to the formation of a bimodal eutectic structure (β-Ti/TiFe + β- Ti/BiIn containing phase). Furthermore, the (Ti65Fe35)95(Bi53In47)5 alloy exhibited optimized mechanical properties with high strength (1319MPa) and reasonable plasticity (14.2%). The results of this study indicate that the transition of the eutectic structure, the type of primary phases and the supersaturation in the β-Ti phase are crucial factors for controlling the mechanical properties of the ultrafine dendrite-eutectic composites.
        4,000원
        135.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to develop a new commercial Al-12%Si casting alloy with improved physical properties, we investigated the effect of adding Sr and TiB to the alloy. Al-12%Si alloys were prepared by die casting at 660 oC. The eutectic temperature of the Sr-modified Al-12%Si alloy decreased to 9 oC and the mushy zone region increased. The shape of the Si phase changed from coarse acicula to fine fiber with the addition of Sr. The addition of TiB in the Al-12%Si alloy reduced the size of the primary α-Al and eutectic Si phases. When Sr and TiB were added together, it worked more effectively in refinement and modification. The density of twins in the Si phase-doped Sr increased and the width of the twins was refined to 5 nm. These results are related to the impurity induced twinning(IIT) growth.
        4,000원
        136.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Microstructure, electric, and thermal properties of the Ta-Cu composite is evaluated for the application in electric contact materials. This material has the potential to be used in a medium for a high current range of current conditions, replacing Ag-MO, W, and WC containing materials. The optimized SPS process conditions are a temperature of 900oC for a 5 min holding time under a 30 MPa mechanical pressure. Comparative research is carried out for the calculated and actual values of the thermal and electric properties. The range of actual thermal and electric properties of the Ta-Cu composite are 50~300W/mk and 10~90 %IACS, respectively, according to the compositional change of the 90 to 10 wt% Ta-Cu system. The results related to the electric contact properties, suggest that less than 50 wt% of Ta compositions are possible in applications of electric contact materials.
        4,000원
        137.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of Y2O3 particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and 1100 oC for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at 1100 oC showed a more homogeneous microstructure. In the case of sintering at 1100 oC, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.
        4,000원
        138.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This present study deals with the microstructure and tensile properties of 600 MPa-grade high strength and seismic resistant reinforcing steels. The high strength reinforcing steel (SD 600) was fabricated by Tempcore processing, while the seismic resistant reinforcing steel (SD 600S) was air-cooled after hot-rolling treatment. The microstructure analysis results showed that the SD 600 steel specimen consisted of a tempered martensite and ferrite-pearlite structure after Tempcore processing, while the SD 600S steel specimen had a fully ferrite-pearlite structure. The room-temperature tensile test results indicate that, because of the enhanced solid solution and precipitation strengthening caused by relatively higher contents of C, Mn, Si and V in the SD 600S steel specimen, this specimen, with fully ferrite-pearlite structure, had yield and tensile strengths higher than those of the SD 600 specimen. On the other hand, the hardness of the SD 600 and SD 600S steel specimens changed in different ways according to location, dependent on the microstructure, ferrite grain size, and volume fraction.
        4,000원
        139.
        2017.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, the effects of hydrogen reduction on the microstructure and thermoelectric properties of (GeTe)0.85(AgSbTe2)0.15 (TAGS-85) were studied by a combination of gas atomization and spark plasma sintering. The crystal structure and microstructure of TAGS-85 were characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The oxygen content of both powders and bulk samples were found to decrease with increasing reduction temperature. The grain size gradually increased with increasing reduction temperature due to adhesion of fine grains in a temperature range of 350 to 450 °C. The electrical resistivity was found to increase with reduction temperature due to a decrease in carrier concentration. The Seebeck coefficient decreased with increasing reduction temperature and was in good agreement with the carrier concentration and carrier mobility. The maximum power factor, 3.3 × 10−3 W/mK2, was measured for the non-reduction bulk TAGS-85 at 450 °C.
        4,000원
        140.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, we use multiwall carbon nanotubes (MWCNT) as the starting material for the fabrication of sintered carbon steel. A comparison is made with conventionally sintered carbon steel, where graphite is used as the starting material. Milling is performed using a horizontal mill sintered in a vacuum furnace. We analyze the grain size, number of pores, X-ray diffraction patterns, and microstructure. Changes in the physical properties are determined by using the Archimedes method and Vickers hardness measurements. The result shows that the use of MWCNTs instead of graphite significantly reduces the size and volume of the pores as well as the grain size after sintering. The addition of Y2O3.to the Fe-MWCNT samples further inhibits the growth of grains.
        3,000원