검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        난자의 성숙과정과 노화에 관한 이해는 인공수정과 체외수정 최적기를 판단하기 위하여 가장 중요한 연구내용으로 알려져 있다. 이러한 기작은 번식 호르몬들에 의하여 조절되는 것으로 알려져 있으나 난자 세포질 변화에 관한 내용은 잘 알려져 있지 않다. 본 연구에서는 산화질소물(nitric oxide, NO)이 난자 성숙과정에서 증가하는 것을 밝혔으며 난자의 미성숙단계(germinal vesicle stage, GV)와 난자핵막붕괴단계(germinal vesicle breakdown, GVBD) 및 성숙완료단계(metaphase II, MII)단계에서 생산되는 NO의 양을 비교하였다. 또한, 난자를 체외에서 배양할 때, MII단계로 성숙되지 않는 성장 단계의 난자에서는 NO의 증가 현상을 관찰할 수 없었고, 세포질이 불균일한 노화된 난자에서는 NO가 증가된 상태로 유지되는 특성이 있음을 밝혔다. 이러한 결과는 NO의 작용이 난자의 성숙과정과 난자 노화과정에서 중요한 기능을 담당하고 있음을 보여주고 있다.
        4,000원
        2.
        2016.10 구독 인증기관·개인회원 무료
        Mitotic spindle formation is regulated by centrosomes, composed of a centriole pair surrounded by pericentriolar materials(PCM) proteins. However, mammalian oocytes rely on acentriolar MTOCs for the function of meiotic spindle. The composition of acentriolar MTOCs and the molecular precesses that regulate the localization and accumulation in mammalian oocyte are not well understood. In this study, we analyzed the mechanisms of spindle microtubule nucleation and stability from MTOCs in mouse oocyte, and indentified Centrosomal protein192(CEP192) as a key regulator for acentriolar MTOC formation. CEP192 specifically colocalized with pericentrin (PCNT) during the oocyte maturaion. CEP192 proteins are localized throughout cytoplasm and around nucleus at GV stage, and then after BD stage, CEP192 proteins were further fragmented into smaller MTOCs around chromosomes. At metaphase, CEP192 proteins were concentrated in spindle pole. Knockdown of CEP192 using siRNAs resulted in metaphase I arrest. The arrested oocytes were characterized by reduced microtubule intensity and misalignment chromosome. Also at BD and ProMI stage, the oocytes reduced microtubule density and PCNT intensity. To confirm the mechanism of CEP192 regulation, we confirmed that PLK1 and AuroraA kinase were involved in CEP192 activation. The investigations for detailed molecular mechanisms of CEP192 and RanGTP for microtubule nucleation in oocytes are underway using various techniques including siRNA, mRNA, and positive or negative dominant injection and inhibitors.
        5.
        2004.09 구독 인증기관 무료, 개인회원 유료
        PKC는 그들의 cofactor-requirments에 따라 cPKC, nPKC 그리고 aPKC, 3그룹으로 나어진다. 마우스 난 성숙과정에 있어서 cPKC 및 nPKC의 activators인 PMA의 영향에 대한 많은 결과가 보고되었다. 그러나 각각의 그룹에 대한 차별화된 영향에 대하여는 밝혀져 있지 않다. Mezerein의 analog인 thymeleatoxin은 cPKC의 특이적인 activator로 보고되어져 있다. 본 연구에서는 specific cPKC activator인 thymeleatoxin의 마우스 난 성숙과정에의 영향을 제1감수분열 재개 능(germinal vesicle break down, GVBD)과 제1 극체 형성 능(1st polar body extrusion)을 조사하여 cPKC및 nPKC activator인 PMA와 비교 검토하였다. 그 결과 GVBD IC50는 thymeleatoxin에서 ~400nM, PMA에서는 ~50nM이었으며, 제1극체 방출의 IC50는 thymeleatoxin에서 ~200nM, PMA에서는 ~20nM이었다. 이들 결과는 Thymeleatoxin의 GVBD나 1st polar body extrusion 저해효과가 PMA에 비하여 1/8~1/10인 것으로 나타났다. 이들 결과는 GVBD나 제1극체 형성을 포함하는 난 성숙과정에서 cPKC보다 상대적으로 nPKC의 관여가 깊음을 보여 준다.
        3,000원
        6.
        2015.09 서비스 종료(열람 제한)
        Primary oocytes that are arrested in first meiotic prophase for years enter maturation process to meet a critical precondition for successful fertilization. During maturation, oocyte finishes meiosis I and progresses to the metaphase II stage, achieving meiotic maturity. Although importance of oocyte maturation for oocyte quality has been recognized, it is not fully understood for molecular mechanisms underlying oocyte maturation. Here, we found that dexamethasone-induced Ras-related protein 1 (RASD1), a member of RAS superfamily of small GTPases, was expressed in the mouse ovary. Immunohistochemical analysis revealed that Rasd1 expression was dominant in oocyte cytoplasm. Real-time PCR and RT-PCR analyses showed that Rasd1 mRNA was steadily expressed in germinal vesicle (GV), germinal vesicle break down (GVBD), metaphase I (MI) oocytes, but decreased in metaphase II(MII) oocytes during oocyte maturation. Konckdown of Rasd1 using RNAi system in the GV oocytes suppressed oocyte maturation through disruption of meiotic spindle and formation of misarranged chromosomes. Taken together, Rasd1 is a critical factor for MI-MII transition of oocyte and is involved in the regulation of spindle formation during oocyte maturation. Further study is needed to examine relationship between Rasd1 and spindle formation in MI-MII transition.
        7.
        2015.09 서비스 종료(열람 제한)
        Dynamic reorganization of actin filaments is essential for various stages of mammalian oocyte maturation, including spindle migration, actin cap formation, polar body extrusion, and cytokinesis. Various actin binding proteins (ABPs) have been known to be involved in the regulation of actin filament remodeling. We elucidate roles of three different actin binding proteins in mouse oocyte maturation. The heterodimeric actin-capping protein (CP) binds to the fast-growing(barbed) ends of actin filaments and plays essential roles in various actin-mediated cellular processes. When CP is knockdowned or inhibitory component was overexpressed, asymmetric division of oocyte have been compromised. It turns out that knockdown or inhibition of CP deplete cytoplasmic actin mesh level, which have been known to be essential for maintain cytoplasmic actin mesh. Another actin binding proteins, tropomodulin 3 (Tmod3), binds to the slow-growing end of actin filaments and knockdown or expression deletion mutant of Tmod3 also decrease actin mesh level in maturing oocyte and it severely ablated asymmetric division of oocyte. Finally, tropomyosin 3, actin filament binding proteins protect actin filament from depolymerization, is also important to maintain cortex integrity in maturing oocyte. Taken together, these finding showed the essential roles of actin binding proteins in remodeling of actin filaments in mammalian oocyte development.
        8.
        2014.09 서비스 종료(열람 제한)
        Throughout their meiotic maturation in most mammals, oocytes are arrested twice, prophase I and metaphase II. Being released from these arrests, transient or oscillation of intracellular Ca2+ concentration is observed in the ooplasm, which is not answered in relation to the specific role in the resumption of meiotic arrest. Recently, Ca2+/calmodulin-dependent protein kinase II (CaM KII) has been known as a Ca2+ oscillation decoder from the in vitro experiment. CaM KII is multifunctional serine/threonine kinase observed in most cells. Present studies were performed to investigate the role of CaM KII during resumption of meiotic arrest and activation in vitro of mouse oocytes. It was questioned whether CaM KII might be involved in the meiotic resumption of mouse oocytes. Compared to the control, both of CaM KII inhibitors, KN-93 and KN-62, significantly inhibited germinal vesicle breakdown (GVBD) of mouse oocytes in a dose-dependent manner. As the concentration of KN-93 increased, concomitant decrease of intracellular Ca2+ concentration ([Ca2+]i) was also observed using confocal laser scanning microscope (CLSM) and an intracellular Ca2+ indicator, fluo 3-AM. When GVBD oocytes were treated with 6% ethanol, small [Ca2+]i transient was observed in oocytes bathed with Ca2+-free medium and large increase was observed in oocytes bathed with Ca2+-containing medium, suggesting that [Ca2+]i transient could happen from intracellular Ca2+ store as well as Ca2+ influx through Ca2+-channel on the oolemma. However, KN-93 inhibited the [Ca2+]i transient of GVBD oocytes in both cases. Using monoclonal antibodies against α-subunit of CaM KII, tubulin and microtubule-assocaited proteins (MAPs), CaM KII has been colocalized on the spindle with tubulin and MAPs. The present study also demonstrated the presence of α-subunit of CaM KII in heart, kidney, testes, ovary as well as in brain of the mouse. In ovarian follicles, CaM KII was expressed in granulosa cells and oocytes. Based on overall the above results, followings are suggested. First, CaM KII might be involved in the regulatory mechanism of meiotic resumption. Second, CaM KII might play a regulatory role in the stabilization of microtubule.
        10.
        2006.09 KCI 등재 서비스 종료(열람 제한)
        본 실험은 생쥐 난자의 성숙과 생존에 미치는 selenium의 영향을 알아보고자 수행하였다. 난자의 성숙은 현미경을 통해 관찰하였으며, 핵막 붕괴(germinal vesicle breakdown, GVBD)와 극체 형성(polar body formation, PB)은 체외 배양 시작 후 각각 2.5, 13시간에 확인하였다. 난자의 생존은 72 시간동안 체외 배양하면서 형태학적 차이로 정상 난자와 비정상 난자를 판별하였다. 또한 각 단계별로 수집된 난자의
        11.
        1998.06 KCI 등재 서비스 종료(열람 제한)
        Phospholipase C (PLC)는 다양한 세포주에서 세포내 신호전달에 중요한 역할을 한다고 알려져 있으나, 생쥐 난자성숙 과정과 착성전 배아발생 과정에서 PLC의 역할과 발현은 아직 연구된 바 없다. 본 연구에서는 난자성숙과 착상전 배아발생 과정에서 생쥐의 PLC β1과 γ1의 유전자 발현을 조사하기 위하여 한 개의 난자 혹은 배아에서 추출된 total RNA를 사용하여 경쟁적 RT-PCR 방법으로 mRNA를 정량하였다. PL
        12.
        1997.02 KCI 등재 서비스 종료(열람 제한)
        Befor fertilization, mammalian oocytes undergo meiotic maturation, which consists of nuclear and cytoplasmic differentiation. In this study, changes of stores in mouse oocytes were examined during meiotic maturation and the role of in the regulation of the maturation was investigated by using monoclonal antibodies against smooth endoplasmic reticulum -ATPase(SERCA-ATPase) and calreticulin. Observations were made under epifluorescence microscope and/or confocal laser scanning microscope. In immature oocytes which did not resume meiotic maturation, SERCA-ATPases were mostly localized in the vicinity of the germinal vesicle and calreticulins were distributed evenly throughout the cytoplasm. In mature oocytes, SERCA-ATPases were observed throughout the cytoplasm, butwere absent from the nuclear region. In contrast, calreticulins were localized mostl in the cortex of the oocyte and were absent from the cytoplasm. However, bright fluoresence stainings were wbserved in the perimeiotic spindle region of mature oocyte when labeled with antibodies against calreticulin. These results indicate that mouse oocytes undergo distinct rearrangement of the localization of -ATPases and calreticulins during meiotic maturation. Thus it can be suggested that redistribution of the stores, as revealed by differential fluorescence stainings, is deeply involved in the regulatory mechanism of mammalian oocyte maturation.