검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 123

        101.
        2007.11 KCI 등재 서비스 종료(열람 제한)
        Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and NOx compounds from a low concentration, high volume waste gas streams because of its simplicity and cost- effectiveness. This study investigated the optimal mixture fraction of briquet ash, compost, soil and loess for NOx degradation. Extreme vertices design was used to examine the role of four components on NOx degradation. Under our experimental conditions, 74.5% of NOx degradation was observed, using a model mixture(25% briquet ash, 10% compost, 30% soil and 40% loess) containing 100 ppb of NO. It was shown that experimental design analysis could allow selecting optimal conditions in such biodegradation processes in this study.
        103.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        V2O5/TiO2 catalyst impregnated ceramic candle filters are in principle, capable of performing shallow-bed dust filtration plus a catalytic reaction, promoted by a catalytic deposited in their inner structure. Pilot-scale V2O5/TiO2 catalyst impregnated ceramic candle filters were prepared, characterized and tested for their activity towards the SCR reaction. The effect on NO conversion of operating temperature, gas hourly space velocity, amount of deposited catalyst, pressure drops and long-term experiment (life of catalytic filter) was determined. The following effects of V2O5/TiO2 catalyst impregnated ceramic candle filters in SCR reaction are observed: (1) It increases the activity and widens the temperature window for SCR. (2) When the content of V2O5 catalyst increases further from 3 to 9wt.%, activity of NO increases. (3) NO conversion at first increases with temperature and then decreases at high temperatures (above 400℃ over), possibly due to the occurrence of the ammonia oxidation reaction.
        104.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        Atmospheric photochemistry of O3-NOX-RH were considered theoretically, to clarify the reasons for the different trends of between the formation of photochemical oxidants (OX) and its primary pollutants for the Low- and High-NOX regimes. Equations of OH, HO2, and production of ozone (O3) as a function of nitrogen oxides (NOX) and reactive hydrocarbons (RH) were represented in this study. For the Low-NOX regime, HO2 radical is proportional to RH but independent of NOX. OH radical is proportional to NOX but inversely-proportional to RH. O3 production is proportional to NOX but has a weak dependence on RH. For the High-NOX regime, OH and HO2 radicals concentrations and O3 production are proportional to RH but inversely-proportional to NOX. In addition, the Osaka Bay and surrounding areas of Japan were evaluated with the mass balance of odd-hydrogen radicals (Odd-H) using CBM-Ⅳ photochemical mechanism, in order to distinguish the Low- and High-NOX regimes. The Harima area (emission ratio, RH/NOX = 6.1) was classified to the Low-NOX regime. The Hanshin area (RH/NOX = 3.5) and Osaka area (RH/NOX = 4.3) were classified to the High-NOX regime.
        106.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        Removal of NOx on CaO/TiO2 photocatalyst manufactured by the addition of Ca(OH)2 was measured in relation with the amount of Ca(OH)2 and calcination temperature. In case of pure TiO2, the NOx removal decreased greatly with the increase of calcination temperature from 500oC to 700oC, whereas in the photocatalyst added with Ca(OH)2, the removed amount of NOx was high and constant regardless of calcination temperature. Considering NOx removal patterns depending on the amount of Ca(OH)2 added(50, 30, 10wt%), high removal rate showed at the photocatalysts containing less than 30wt% of Ca(OH)2, and it was about 30% higher than that of pure TiO2. From the XRD patterns, it is seen that the addition of Ca(OH)2 contributes to maintaining the anatase structure that is favourable to photocatalysis. It also indicates that the possibility of the formation of calcium titanate(CaTiO3) by reacting with TiO2 above 700oC. Apart from the favourable crystalline structure, the addition of Ca(OH)2 helped increase the alkalinity of photocatalyst surface, thus promoting the photooxidation reaction of NOx.
        107.
        2006.05 KCI 등재 서비스 종료(열람 제한)
        The strength, water permeability, and photo-degradation efficiency of NOx of porous concrete with a new concept were studied in this paper. The porous concrete was comprised of coarse aggregate of maximum size 40 mm, cement, silica fume, water and air-entraining(AE) water reducing agent. The strength of porous concrete was strongly related to its matrix proportion and compaction energy. An experimental test was carried out to study the parameters of cement proportions and silica fume content for pavement applications of porous concrete which were paving a footpath, a bikeway, a parking lot, and a driveway. The regressed equations of relationships between compressive strength and flexural strength, and coefficient permeability and void ratios were indicated as y=7.69x+71.74 and y=0.42e0.28x. A method of making an air purification-functioning road, which was spraying a mixture of a photocatalyst, cement, and water onto the surface of the road, was suggested.
        110.
        2006.04 KCI 등재 서비스 종료(열람 제한)
        A (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst were prepared by co-precipitation method and used for low-temperature selective catalytic reduction (SCR) of NOx with ammonia in the presence of oxygen. The properties of the catalysts were studied by X-ray diffraction (XRD), temperature programmed reduction (TPR) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS). The experimental results showed that (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst yielded 81% NO conversion at temperature as low as 150℃ and a space velocity of 2,400 h-1. Crystalline phase of Mn2O3 was present at ≥15% Mn on V2O5/TiO2. XRD confirmed the presence of manganese oxide (Mn2O3) at 2θ=32.978°(222). The XRD patterns presented of (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 did not show intense or sharp peaks for manganese oxides and vanadia oxides. The TPR profiles of (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst showed main reduction peak of a maximum at 595℃.
        111.
        2006.02 KCI 등재 서비스 종료(열람 제한)
        Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and NOx compounds from a low concentration, high volume waste gas streams because of its simplicity and cost-effectiveness. This study was performed to evaluate effect of removal of gaseous NOx using a soil and a yellow soil. Over 60% and 48% of NOx from a soil and a yellow soil was removed at the inlet NO concentrations of 423~ 451ppb, respectively. The bio-filter using a soil media was capable of purifying NOx with a different natural processes. Although some of the processes are quite complex, they can broadly be summarized as adsorption into soil pore water, and biochemical transformations by soil bacteria. When the filteration bio-reactor was applied to a soil and a yellow soil, effective NOx removal was obtained for several times and months. These results show that a soil biofilter can be of use as an alternative advanced NOx treatment system.
        114.
        2004.07 KCI 등재 서비스 종료(열람 제한)
        This paper demonstrates the numerical simulation of three dimensional flow pattern for vehicular exhaust dispersion in the street canyons. The wind flow around buildings in urban is computed by the SIMPLEST method. The convection-diffusion equation was used to compute the NOx concentration level near buildings. Details are given of important boundary conditions and turbulence quantities variations. The simple turbulence model was used for unisotropic viscous effect. A control-volume based finite-difference method with the upwind scheme is employed for discretization equation. The simple turbulence model applied in this study has been verified through comparison between predicted and measured data near buildings. By the predictive results, the updraft induced by the presence of high-rise buildings is important in the transport of street level pollutant out from the street canyons. Our suggestion for reducing ground level pollution is to have high-rise buildings constructed or to reduce the channelling effect of street canyons.
        115.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        V2O5/TiO2 catalysts promoted with Mn were prepared and tested for selective catalytic reduction of NOx in NH3. The effects of promoter content, degree of catalyst loading were investigated for NOx activity while changing temperatures, mole ratio, space velocity and O2 concentration. Among the various V2O5 catalysts having different metal loadings, V2O5(1 wt.%) catalyst showed the highest activity(98%) under wide temperature range of 200-250℃. When the V2O5 catalyst was further modified with 5 wt.% Mn as a promoter, the highest activity(90-47%) was obtained over the low temperature windows of 100-200℃. From Mn-V2O5/TiO2, it was found that by addition of 5 wt.% Mn on V2O5/TiO2 catalyst, reduction activity of catalyst was improved, which resulted in the increase of catalytic activity and NOx reduction. According to the results, NOx removal decreased for 10%, but the reaction temperature down to 100℃.
        116.
        2003.09 KCI 등재 서비스 종료(열람 제한)
        The objective of this research was to test whether, under controlled laboratory conditions, hybrid SNCR/SCR process improves NOx removal efficiency in comparison with the SNCR only. The hybrid process is a combination of a redesigned existing SNCR with a new downstream SCR. NOx reduction experiments using a hybrid SNCR/SCR process have been conducted in simple NO/NH3/O2 gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial NOx concentration was 500 ppm in the presence of 5% or 15% O2. Commercial catalysts, V2O5-WO3-SO4/TiO2, were used for SCR NOx reduction. The residence time and space velocity were around 1.67 seconds and 2,400 h-1 or 6000 h-1 in SNCR and SCR reactors, respectively. NOx reduction of the hybrid system was always higher than could be achieved by SNCR alone at a given value of NH3SLIP. Optimization of the hybrid system performance requires maximizing NOx removal in the SNCR process. An analysis based on the hybrid system performance in this lab-scale work indicates that a equipment with NOxi=500 ppm will achieve a total NOx removal of about 90 percent with NH3SLIP ≤ 5 ppm only if the SNCR NOx reduction is at least 60 percent. A hybrid SNCR/SCR process has shown about 26~37% more NOx reduction than a SNCR unit process in which a lower temperature of 850℃ turned out to be more effective.
        118.
        2002.09 KCI 등재 서비스 종료(열람 제한)
        A three-dimensional photochemical air pollution model considered advection, dispersion, photochemical reactions, and precipitation processes was developed. The calculated results of meteorological observation clearly exhibited geographical effects of Gwangyang Bay, in which land and sea breezes, mount-valley winds and local circular winds occurred. The observed results of daytime NOx concentrations were slightly higher than the calculated NOx concentrations in Yosu industrial complex, Gwangyang iron mill, and container yard. Eventually, the calculated NOx results generally agreed well with the observed ones.
        6 7