Piezoelectric ceramic specimens with the Pb(Mg1/3Nb2/3)0.65Ti0.35O3 (PMN-PT) composition are prepared by the solid state reaction method known as the “columbite precursor” method. Moreover, the effects of the Li2O-Bi2O3 additive on the microstructure, crystal structure, and piezoelectric properties of sintered PMN-PT ceramic samples are investigated. The addition of Li2O-Bi2O3 lowers the sintering temperature from 1,200oC to 950oC. Moreover, with the addition of >5 wt.% additive, the crystal structure changes from tetragonal to rhombohedral. Notably, the sample with 3 wt.% additive exhibits excellent piezoelectric properties (d33 = 596 pC/N and Kp = 57%) and a sintered density of 7.92 g/cm3 after sintering at 950oC. In addition, the sample exhibits a curie temperature of 138.6oC at 1 kHz. Finally, the compatibility of the sample with a Cu electrode is examined, because the energy-dispersive X-ray spectroscopy data indicate the absence of interdiffusion between Cu and the ceramic material.
This study investigates the effect of MnO2 and CuO as acceptor additives on the microstructure and piezoelectric properties of 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3, which has a rhombohedral-tetragonal phase boundary composition. MnO2 and CuO-added 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3 ceramics sintered at a relatively low temperature of 1020 oC show a pure perovskite phase with no secondary phase. As the addition of MnO2 and CuO increases, the sintered density and grain size of the resulting ceramics increases. Due to the difference in the amount of oxygen vacancies produced by B-site substitution, Cu ion doping is more effective for uniform grain growth than Mn ion doping. The formation of oxygen vacancies due to B-site substitution of Cu or Mn ions results in a hardening effect via ferroelectric domain pinning, leading to a reduction in the piezoelectric charge coefficient and improvement of the mechanical quality factor. For the same amount of additive, the addition of CuO is more advantageous for obtaining a high mechanical quality factor than the addition of MnO2.
In this study, six kinds of low-carbon steel specimens with different ferrite-pearlite microstructures were fabricated by varying the Nb content and the transformation temperature. The microstructural factors of ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured based on optical and scanning electron micrographs; then, Charpy impact tests were conducted in order to investigate the correlation of the microstructural factors with the impact toughness and the ductile-brittle transition temperature (DBTT). The microstructural analysis results showed that the Nb4 specimens had ferrite grain size smaller than that of the Nb0 specimens due to the pinning effect resulting from the formation of carbonitrides. The pearlite interlamellar spacing and the cementite thickness also decreased as the transformation temperature decreased. The Charpy impact test results indicated that the impact-absorbed energy increased and the ductile-brittle transition temperature decreased with addition of Nb content and decreasing transformation temperature, although all specimens showed ductile-brittle transition behaviour.
The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of M23(C,B)6 along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of 3 oC/s, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.
The effects of Nb and Cr addition on the microstructure, corrosion and oxide characteristics of Zr based alloys wereinvestigated. The corrosion tests were performed in a pressurized water reactor simulated-loop system at 360oC. Themicrostructures were examined using OM and TEM, and the oxide properties were characterized by low-angle X-ray diffractionand TEM. The corrosion test results up to 360 days revealed that the corrosion rates were considerably affected by Cr contentbut not Nb content. The corrosion resistance of the Zr-xNb-0.1Sn-yCr quaternary alloys was improved by an increasing Nb/Cr ratio. The crystal structure of the precipitates was affected by a variation of the Nb/Cr ratio. The Zr-Nb beta-enrichedprecipitates were mainly formed in the high Nb/Cr ratio alloy while Zr(NbCr)2 precipitates were frequently observed in the lowNb/Cr ratio alloy. The studies of oxide characteristics revealed that the corrosion resistance was related to the crystal structureof the precipitate.
For the aim of low-temperature co-fired ceramic microwave components, sintering behavior and microwave properties (dielectric constant , quality factor Q, and temperature coefficient of resonant frequency ) are investigated in [BCZN] ceramics with addition of . The specimens are prepared by conventional ceramic processing technique. As the main result, it is demonstrated that the additives () show the effect of lowering of sintering temperature and improvement of microwave properties at the optimum additive content. The addition of 0.25 wt% lowers the sintering temperature to utilizing liquidphase sintering and show the microwave dielectric properties (dielectric constant = 75, quality factor = 572 GHz, temperature coefficient of resonance frequency ). The estimated microwave dielectric properties with addition (increase of , decrease of , shift of to negative values) can be explained by the observed microstrucure (sintered density, abnormal grain structure) and possibly high-permittivity (BZN) phase determined by X-ray diffraction.
0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3계 완화형 강유전체에서 MnO2 첨가가 압전물성에 미치는 영향을 강유전성이 우세한 온도영역인 -40~30˚C의 온도범위에 걸쳐 조사하였다. MnO2 첨가에 의한 효과를 유전특성, 압전특성, 전계유기 변형특성 등의 영역에서 고찰하였다 MnO2 첨가량이 증가할수록 유전성 및 압전성은 hard piezoelectric의 경향을 나타내었다. 이러한 실험적 고찰로부터 첨가된 Mn은 강유전 도메인 분역을 고정하는 역할을 하는 것으로 제안되었다.
Zr-Sn-Nb 합금의 재결정에 미치는 Nb과 Sn의 첨가영향을 연구하기 위해 냉간압연한 시편을 300˚C~750˚C의 온도구간에서 열처리한 후에 미소경도와 TEP (Thermoelectric Power)를 측정하여 재결정 거동을 조사하였으며 광학현미경, 주사전자 현미경 (SEM), 투과전자현미경 (TEM)으로 미세조직을 관찰하였다 미소경도 및 미세조직의 분석 결과에 따르면, Nb과 Sn의 첨가에 의해 재결정 활성화 에너지가 증가하여 재결정이 지연되었으며, 재결정 완료 이후의 결정립 성장도 억제되었음을 관찰하였다. Zr내의 고용도가 매우 낮은 Nb의 첨가는 석출물을 쉽게 형성하는 반면에 고용도가 비교적 큰 Sn은 기지상 내에 대부분 고용되어 석출물의 양이 매우 작았으나, Sn 첨가에 의한 재결정의 지연 효과가 더욱 컸다. Nb보다 Sn의 첨가가 Zr 합금의 재결정 거동을 효과적으로 지연시킨 것은 고용도가 높은 SR에 의한 치환형 고용체 형성과정에서 발생된 응력장이 전위의 이동을 효과적으로 억제했기 때문으로 생각된다. 한편, 회복과 재결정이 진행됨에 따라 전자 산란인자의 감소로 TEP는 증가하였으며, 재결정이 완료되면 TEP의 포화가 발생하였다. 석출물의 형성은 석출물 주변의 용질농도 감소로 인한 전자 산란인자의 감소에 기인하여 TEP의 증가를 가져왔다
저손실 망간징크 페라이트에서 CaO-SiO2첨가는 입계에 높은 전기저항층을 형성시켜 와류에 의한 손실을 감소시키는 것으로 알려져 있다. 본 실험에서는 Nb2O5 를 제 3의 첨가제로 사용하여 저손실 망간징크 페라이트에서의 전자기적 물성변화를 관찰하였다. Nb2O5 300ppm 이상 첨가시 부분적인 과대입자 성장이 관찰되었으며, 200ppm 첨가시 CaO-SiO2만 첨가한 시편에 비하여 밀도가 증가하였다. Nb2O5 첨가시에는 100ppm 이하의 SiO2첨가에서 우수한 전력손실 특성이 나타났으며, 고온 소결시 Nb2O5-CaO를 첨가한 시편에서 낮은 전력손실을 나타내었다.