검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 203

        81.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Evolutionary computation is a powerful tool for developing computer games. Back-propagation neural network(BPNN) was proved to be a universal approximator and genetic algorithm(GA) a global searcher. The game of Tic-Tac-Toe, also known as Naughts and Crosses, is often used as a test bed for testing new AI algorithms. We tried to recognize the strategic fitness of a finished Tic-Tac-Toe game when the parameters, such as a sequence of moves, its game depth and result, are provided. To implement this, we've constructed an evolutionary model using GA with back-propagation NNs(GANN). The experimental results revealed that GANN, in the very long training time, converges very slowly; however, performance of recognizing the strategic fitness does not meet we expected and, further, increase of the population size does not significantly contribute to the performance of GANN.
        4,000원
        82.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study we develop a set of solar proton event (SPE) forecast models with NOAA scales by Multi Layer Perceptron (MLP), one of neural network methods, using GOES solar X-ray flare data from 1976 to 2011. Our MLP models are the first attempt to forecast the SPE scales by the neural network method. The combinations of X-ray flare class, impulsive time, and location are used for input data. For this study we make a number of trials by changing the number of layers and nodes as well as combinations of the input data. To find the best model, we use the summation of F-scores weighted by SPE scales, where F-score is the harmonic mean of PODy (recall) and precision (positive predictive value), in order to minimize both misses and false alarms. We find that the MLP models are much better than the multiple linear regression model and one layer MLP model gives the best result.
        4,000원
        84.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The thermodynamic state variables in superheated region of steam table are not wholy obtained by measurements. This means that steam table contains a little error. In this study small error was artificially added to superheated variables and modeled using neural networks. The results were compared with the analysis using quadratic spline interpolation method. By and large the relative errors of variables by neural networks were sufficiently small and similar to or less than those by quadratic spline interpolation method. It was concluded that neural networks could be one good way of modeling for superheated steam table.
        4,000원
        85.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기존의 회귀분석과는 달리 시계열 분석과 인공신경망 모형을 이용하여 장래 해상교통량을 예측하였다. 특히, 시계열 분석을 통한 예측값을 인공신경망 모형에 추가 입력변수로 적용하여 장래 해상교통량 예측을 제고하고자 하였다. 본 연구는 인천항의 1996년부터 2013년까지 월별 관측값을 대상으로 하였다. 모형의 예측력 검증을 위해 1996년부터 2012년까지 관측값을 대상으로 구축한 모형으로부터 2013년을 예측하여 실제 관측값과의 비교로 적합한 모형을 판별하였다. 인천항의 2015년 장래 해상교통량은 매월 평균 교통량보다 5월과 11월에 각 5.9 %, 4.5 % 많았으며, 1월과 8월은 매월 평균 교통량보다 각 8.6 %, 4.7 % 적은 것으로 예측되었다. 따라서 인천항은 계절에 따른 월별 교통량의 차이를 확인할 수 있다. 본 연구는 해상교통 현장관측 조사시 계절에 따른 교통량의 특성을 반영할 수 있는 기초 자료로 활용될 수 있다.
        4,000원
        86.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In biomass gasification, efficiency of energy quantification is a difficult part without finishing the process. In this article, a radial basis function neural network (RBFN) is proposed to predict biomass efficiency before gasification. RBFN will be compared with a principal component regression (PCR) and a multilayer perceptron neural network (MLPN). Due to the high dimensionality of data, principal component transform is first used in PCR and afterwards, ordinary regression is applied to selected principal components for modeling. Multilayer perceptron neural network (MLPN) is also used without any preprocessing. For this research, 3 wood samples and 3 other feedstock are used and they are near infrared (NIR) spectrum data with high-dimensionality. Ash and char are used as response variables. The comparison results of two responses will be shown.
        4,000원
        88.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High hardness steel generally means its hardness over HRC45. This using CBN tools for turning. Tool breakage and damage during turning process cause material loss and additional tool cost. If it is predicted during the process and accumulate this data as a turning parameter it will be of help to turning mechanism understanding. For this purpose neural technology give beneficial as prediction, categorization, searching and enable nolinear function for pre-diagnosis algorithm. In this study we appraise the accuracy of prediction by applying backpropagation neural networks (BPNs) method in the high hardness steel turning.
        4,000원
        89.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using artificial neural network (ANN) technique, auction prices for common mackerel were forecasted with the daily total sale and auction price data at the Busan Cooperative Fish Market before introducing Total Allowable Catch (TAC) system, when catch data had no limit in Korea. Virtual input data produced from actual data were used to improve the accuracy of prediction and the suitable neural network was induced for the prediction. We tested 35 networks to be retained 10, and found good performance network with regression ratio of 0.904 and determination coefficient of 0.695. There were significant variations between training and verification errors in this network. Ideally, it should require more training cases to avoid over-learning, which leads to improve performance and makes the results more reliable. And the precision of prediction was improved when environmental factors including physical and biological variables were added. This network for prediction of price and catch was considered to be applicable for other fishes.
        4,000원
        90.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        저류층 내에 부존되어 있는 탄화수소의 매장량을 계산하기 위해서는 그 저류층의 공극률이 필요하다. 일반적으로 시추공 이외의 지역에 대한 공극률은 시추공에서 얻은 공극률 검층자료로부터 외삽하여 얻지만, 시추공을 포함한 지역에서 획득한 탄성파탐사 자료가 존재하는 경우 시추공 자료와 함께 탄성파 탐사 자료를 이용하여 시추공 이외의 지역에서 보다 정확한 유사 공극률을 추출해낼 수 있다. 이 연구에서는 다항식 신경망 기법을 이용하여 탄성파 탐사 자료와 공극률 검층 자료로부터 유사 공극률 검층 자료를 생성하는 모듈을 개발하였다. 먼저 탄성파 탐사 자료로부터 추출된 지하매질의 특성을 나타내는 탄성파 속성(seismic attribute)과 심도에 따른 시간의 자료로 변환된 공극률 검층 자료로부터 다항식 신경망 기법을 사용하여 상관계수를 추출하였고 이 계수를 이용하여 시추공이 없는 지역에서의 공극률 정보를 생성하였다. 한편, 개발된 모듈에서는 보다 정확한 공극률을 획득하기 위하여 각각의 탄성파 속성들과 공극률 검층 자료와의 상관성 분석을 통해 상관성이 높은 탄성파 속성들을 사용하였다. 개발된 다항식 신경망 모듈의 신뢰성, 활용성을 검증하기 위하여 개발된 모듈을 북해 F3 지역의 현장자료에 적용하고, 얻어진 결과를 상용 프로그램에서 사용되는 확률론적 신경망 기법을 통해 얻어진 결과와 비교하였다. 두 방법으로부터 얻은 결과들은 유사한 결과를 보였으며 이를 통해 개발된 모듈의 신뢰성을 입증할 수 있었다. 또한, 다항식 신경망 기법으로부터 얻어진 유사 공극률 검층 자료가 확률론적 신경망 기법을 통해 얻어진 결과보다 실제 값에 더 가깝다는 것을 보여주었다. 따라서 북해 F3 지역과 같이 시추공 자료가 부족한 지역에서는 다항식 신경망 기법이 효과적임을 알 수 있었다.
        4,000원
        91.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study proposes the compensation method for the mechanical deflection error of a SCARA robot. While most studies on the related subject have dealt with the development of a control algorithm for improvement of robot accuracy, this study presents the control method reflecting the mechanical deflection error which is predicted in advance. The deflection at the end of the gripper of SCARA robot is caused by the self-weights and payloads of Arm 1, Arm 2 and quill. If the deflection is constant even though robot’ posture and payload vary, there may not be a big problem on robot accuracy because repetitive accuracy, that is relative accuracy, is more important than absolute accuracy in robot. The deflection in the end of the gripper varies as robot’ posture and payload change. That’ why the moments ,  and  working on every joint of a robot vary with robot’ posture and payload size. This study suggests the compensation method which predicts the deflection in advance with the variations in robot’ posture and payload using neural network. To do this, I chose the posture of robot and the payloads at random, found the deflections by the FEM analysis, and then on the basis of this data, made compensation possible by predicting deflections in advance successively with the variations in robot’ posture and payload through neural network learning.
        4,000원
        92.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 불특정 다수의 도로이용자들이 경로우회 시 갖는 의사결정과정속에 내포된 비선형성과 불확실성을 고려한 정도 있는 모형구축으로 주요 우회결정요인을 분석하는 것이 주요 목적이다. 이를 위하여 고속도로 및 국도를 이용하는 운전자를 대상으로 우회여부에 관련된 SP조사를 실시하였고, 조사결과에 대하여 의사결정나무와 신경망이론의 결합된 모형을 구축하여 운전자 우회결정요인을 분석하였다. 분석결과 운전자 우회여부결정에 영향을 미치는 요인은 우회도로 인지여부, 교통정보 신뢰도 및 이용빈도, 경로전환빈도, 나이순으로 나타났다. 또한 오분류표를 통한 기존 모형과의 예측력의 비교결과 결합된 모형의 오분류율이 8.7%로 기존 모형인 로짓모형 12.8%, 의사결정나무 단독 모형 13.8%와 비교했을 때 가장 예측력이 높은 것으로 나타나 운전자 우회결정요인 분석에 관한 모형의 적용 타당성을 확인할 수 있었다. 본 연구의 결과는 향후 교통량 분산효과와 도로망 효율 증대를 위한 효과적인 우회관리전략 수립 시 기초 자료로 활용가능하리라 사료된다.
        4,000원
        93.
        2011.03 구독 인증기관 무료, 개인회원 유료
        4,000원
        94.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 신호교차로 교통사고예측모형 구축 과정 중 일반적으로 제한된 변수의 선정 및 모형의 구축에만 주로 초점이 맞추어진 기존 방법론의 문제점을 개선하고, 자료조사 및 수집 과정에서 발생하는 자료의 불확실한 상태를 인정하면서 자료의 불확실성을 최소화하여 이용할 수 있는 방법론을 개발하는데 연구의 주안점을 두었다. 퍼지추론이론과 신경망이론을 이용한 모형을 구축하였고, 마지막으로 구축된 퍼지추론이론 모형 및 신경망이론 모형과 기존 회귀모형인 포아송 회귀모형간의 통계적인 검증과 실제 Data를 이용한 모형의 적정성을 검토하였다. 모형의 통계적인 검증시 기존모형에 비해 퍼지추론모형과 신경망이론모형이 더 설명력이 높은 것으로 나타났고, 검증에서도 퍼지추론이론과 신경망이론이 적절한 것으로 나타났으며 기존모형보다 사고건수를 예측하는 설명력이 높은 것으로 입증되었다. 본 연구에서 개발된 모형은 계획 및 운영단계에서 신호교차로의 안전성을 측정하는데 활용될 수 있으며, 궁극적으로는 신호교차로에서 교통사고를 줄이는데 기여할 수 있을 것으로 판단된다.
        4,000원
        95.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-performance concrete (HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other conc
        4,000원
        96.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and 12-μm channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.
        4,000원
        97.
        2010.05 구독 인증기관 무료, 개인회원 유료
        High-performance concrete(HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other concrete ingredients. HPC is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed at demonstrating the possibilities of adapting artificial neural network (ANN) to predict the comprresive strength of HPC. Mahalanobis Distance(MD) outlier detection method used for the purpose increase prediction ability of ANN. The detailed procedure of calculating Mahalanobis Distance (MD) is described. The effects of outlier compared with before and after artificial neural network training. MD outlier detection method successfully removed existence of outlier and improved the neural network training and prediction perfomance.
        4,000원
        98.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        북서태평양에서 발생한 태풍에 대해 발생 후 5일 동안 12시간 간격으로 태풍의 강도 및 진로를 예측할 수 있는 인공신경망 모델을 개발하였다. 사용되어진 예측인지는 CLIPER(발생 위치 강도 일자), 운동학적 파라미터(연직바람시어, 상층발산, 하층상대와도), 열적 파라미터(상층 상당온위, ENSO, 상층온도, 중층 상대습도)로 구성되어졌다. 예측인자의 특성에 따라 일곱개의 인공신경망 모델들이 개발되었으며, CLIPER와 열적 파라미터가 조합된(CLIPER-THERM) 모델이 가장 좋은 예측성능을 보였다. 이 CLIPER-THERM 모델은 강도 및 진로 모두에서 동절기보다 하절기에 더 나은 예측성능을 나타내었다. 또한 태풍의 발생이 아열대 서태평양의 남동쪽에 위치할수록 강도예측에서는 큰 오차를 보였고, 진로예측에서는 아열대 서태평양의 북서쪽에서 발생할수록 큰 오차를 보였다. 이후 인공신경망 모델의 예측성능을 검증하기 위해 같은 예측인자들을 이용하여 다중선형회귀모델을 개발하였으며, 결과로서 비선형 통계기법인 인공신경망 모델이 다중선형회귀모형보다는 더 나은 예측성능을 보였다.
        4,200원
        99.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 신경망 알고리즘 및 반응표면법을 이용하여 부품의 최적화 설계 치수를 예측하고, 예측된 데이터의 신뢰성을 상호 검증하는 하는 데 있다. 부하가 변할 때, 부품의 치수를 변화시켜 가며 응력 및 변형량의 변화를 해석 데이터로 수집하여 반응표면법 및 신경망학습에 이용하였다. 이를 위해 임의의 조건에서 반응표면법으로 최적화 설계를 수행하고, 동일한 조건에서 신경망 알고리즘의 예측결과와 비교하였다. 그 결과 최대 3.0%의 치수 오차를 보이는 것으로 나타났다. 또한 검증을 위해 반대로 동일한 하중 및 치수 조건에서 유한요소해석을 통해 응력 및 처짐량을 구해 반응표면법 및 신경망학습의 결과를 비교하였으며, 이때 4.2%의 오차를 보였다. 이는 부품의 사양 변경 시 최적화 설계를 위해 반응표면법 및 신경망을 이용할 수 있으며 신뢰성이 있음을 알 수 있었다. 특히 신경망 학습을 통해 보다 효과적으로 최적화 설계가 가능함을 확인할 수 있었다.
        4,000원
        100.
        2005.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        대표적인 엘니뇨 지수인 태평양 Nino 해역의 표층 수온을 예측하기 위해 비선형 통계모델 중의 하나인 신경망 기법을 적용하였다. 신경망 모델 학습 과정의 입력 자료로 1951년부터 1993년까지의 태평양 해역(120˚ E, 20˚ S-20˚ N) NCEP/NCAR의 재분석 표층 수온 편차의 경험적 직교함수 7개 주모드를 사용하였고, 그 중 1994년부터 2003년까지의 10년 결과를 분석하였다. 모든 해역에서의 9개월까지의 신경망 모델의 예측력은 비교적 우수하였으며, 특히 1997년과 1998년의 강한 엘니뇨의 발달 및 소멸도 잘 예측함을 확인할 수 있었다. 해역별로는 Nino3 지역의 예측성능이 가장 높았으며, 9개월 이후부터는 그 예측력이 급격히 감소하였다. 한편 지역적인 영향이 커 예측력이 낮은 동태평양 연안의 Nino1+2 지역은 9개월 이후에도 예측력의 감소가 관찰되지 않았다.
        4,000원
        1 2 3 4 5