검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Optimal processes to remove chromaticity at E water treatment plant(WTP) mainly caused by algae of E lake in Jeju island were investigated based on lab-tests of chlorine and ozone oxidation. 42.9% of chromaticity of filtered water was removed by chlorine oxidation under pH 7.0∼8.0, dose of 1.0 mg/L with contact time of 30∼60 min. On the other hand, chromaticity removal was 71.4% when post-ozone dose of 0.9∼1.9 mg/L and pH 9.0, while it was increased to 86.7% under post-ozone dose of 3.1∼7.3 mg/L and pH 9.0. However, there was no significant chromaticity removal efficiency increase when ozone doses were higher than 5.0 mg/L regardless of feeding point(i.e., pre-ozonation and post-ozonation) and pHs(i.e., 7.0 and 9.0.) under the experimental conditions. Based on the results, chlorine oxidation using existing chlorination facilities at the WTP is recommended for lower chromaticity while ozone oxidation is recommended for higher chromaticity by installing new ozone feeding facilities.
        4,000원
        2.
        2004.07 KCI 등재 서비스 종료(열람 제한)
        Evaluated were household THMs exposure associated with the use of municipal tap water treated with chlorine and with ozone-chlorine. The current study measured the THMs concentrations in the tap water and indoor and outdoor air in the two types of household, along with an estimation of THMs exposure from water ingestion, showering, and the inhalation of indoor air. Chloroform was the most abundant THMs in all three media, yet no bromoform was detected in any sample. Contrary to previous findings, the fall water THMs concentrations exhibited no significant difference between the chlorine and ozone-chlorine treated water. However, the spring median chloroform concentration in the tap water treated with chlorine (17.6 ppb) was 1.3 times higher than that in the tap water treated with ozone-chlorine (13.4 ppb). It is suggested that the effects of the water parameters should be considered when evaluating the advantage of ozone-chlorine disinfection for THMs formation over chlorine disinfection. The indoor air THMs concentration trend was also consistent with the water concentration trend, yet the outdoor air THMs concentrations did not differ significantly between the two types of household. The indoor to outdoor air concentration ratios were comparable with previous studies. The THMs exposure estimates from water ingestion, showering, and the inhalation of indoor air suggested that, for the residents living in the surveyed households, their exposure to THMs in the home was mostly associated with their household water use, rather than the indoor air. The THMs exposure estimates from tap water ingestion were similar to those from showering.
        3.
        2004.01 KCI 등재 서비스 종료(열람 제한)
        The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.