검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 285

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study improved the work efficiency by supplementing the shortcomings of the manual process by developing a double tube feeding device, and the following results were obtained by conducting the production capacity, production length, and defect rate tests. Developed a double tube production system to enable the simultaneous production of two tubes, increasing the production volume by about 1.5 times. The product length has been improved from semi-automatic to automated, and the production capacity has been improved from 16 to 25 pieces per hour (based on 15m). Developed a double-tube input straight line automatic adjustment feeder, which resulted in reducing the defect rate to less than 1%.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the enhancement of surface precision and dimensional accuracy in STS 316L oval pipes through the application of magnetic abrasive finishing. The experiment involves the modification magnetic pole shapes(A, B, C, D) and a comprehensive analysis of their impact on surface quality. Key parameters include magnetic abrasive KX#320, iron powder, aluminum oxide, light oil, a test specimen rotating at 600rpm, and periodic injection of polishing liquid, a permanent magnet Nd-Fe-B, and magnetic pole steel 1018, reciprocating distance 20mm, and a feed rate 1mm/sec over a 32minutes duration with measurements every 4minutes. The results demonstrate significant variations in surface quality based on magnetic pole shape, with specific configurations demonstrating superior precision and smoothness from the initial surface 0.32μm to 0.06μm.
        4,000원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The heat transfer characteristics of double-pipe spiral heat exchanger were investigated by various curvature sizes, experimentally. The three different sizes of heat exchanger were made and tested with water as a working fluid to analyze the heat transfer characteristics. The heat transfer rates, overall heat transfer coefficient and pressure drop were analyzed with various heat exchanger sizes (i.e., curvature ratios). As result, the heat transfer rate increased with increasing the size of the heat exchanger as the flow rate increased due to increasing the area size of heat transfer. However, the overall heat transfer coefficient and pressure drop increased with decreasing the heat exchanger size (i.e., increased curvature ratio) due to the enhanced centrifugal force and inertia.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.
        4,800원
        7.
        2023.11 구독 인증기관·개인회원 무료
        Kori Unit 1, pressurized water reactor, is the Korea’s first commercial nuclear power plant. It successfully generated electricity for a period of 30 years, commencing from April 19, 1978. Following its approval for continued operation in 2008, Kori Unit 1 continued to operate for an additional 9 years, resulting in a total operational period of 39 years. On June 18, 2017, Kori Unit 1 was permanently shut down. Since then, Korea is actively preparing for the decommissioning of nuclear power plant. During the decommissioning of a nuclear power plant, the heavy components such as reactor, steam generator, pressurizer, reactor coolant pump located in the containment building should be taken out of the containment building. To take out heavy components from the containment building, pipes connected to heavy component should be cut. There are numerous pipes connected to the heavy component, each with varying dimensions and material. Each pipe has a different level of contamination depending on its use. In this study, optimal cutting method of pipe connected to steam generator, one of the heavy components of nuclear power plant, is proposed during the decommissioning of Kori unit 1. In case of pipe connected to Kori unit 1 steam generator, material is stainless steel or carbon steel. These pipes have varying inner diameter, ranging from 0.6 cm to 74 cm, and thickness ranging from 0.15 cm to 7.1 cm. These pipes are classified as low and intermediate level waste (LILW) or very low level waste (VLLW). Because characteristics of pipes are different, each pipe optimal cutting methods are proposed differently considering material, dimension, contamination level, cutting cost, cutting time, and the management of secondary waste. As a result, the cutting method for pipe of reactor coolant system is selected to orbital cutting. The cutting method of main steam pipe and main feedwater pipe is selected to oxygen cutting. In case of other small pipes, cutting method is selected to circular saw.
        8.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Unlike other facilities, maintaining processes is essential in industrial facilities. Pipe racks, which support pipes of various diameters, are important structures used in industrial facilities. Since the transport process of pipes directly affects the operation of industrial facilities, a fragility curve should be derived based on considering not only the pipe racks' structural safety but also the pipes' transport process. There are several studies where the fragility curves have been determined based on the structural behavior of pipe racks. However, few studies consider the damage criteria of pipes to ensure the transportation process, such as local buckling and tensile failure with surface defects. In this study, an analysis model of a typical straight pipe rack used in domestic industrial facilities is constructed, and incremental dynamic analysis using nonlinear response history analysis is performed to estimate the parameters of the fragility curve by the maximum likelihood estimation. In addition, the pipe rack's structural behavior and the pipe's damage criteria are considered the limit state for the fragility curve. The limit states considered in this paper to evaluate fragility curves are more reasonable to ensure the transportation process of the pipe systems.
        4,000원
        9.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The importance of Structural Health Monitoring (SHM) in the industry is increasing due to various loads, such as earthquakes and wind, having a significant impact on the performance of structures and equipment. Estimating responses is crucial for the effective health management of these assets. However, using numerous sensors in facilities and equipment for response estimation causes economic challenges. Additionally, it could require a response from locations where sensors cannot be attached. Digital twin technology has garnered significant attention in the industry to address these challenges. This paper constructs a digital twin system utilizing the Long Short-Term Memory (LSTM) model to estimate responses in a pipe system under simultaneous seismic load and arbitrary loads. The performance of the data-driven digital twin system was verified through a comparative analysis of experimental data, demonstrating that the constructed digital twin system successfully estimated the responses.
        4,000원
        10.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated how to repair high-pressure pipes by applying the expansion method instead of the welding method used to repair pipes in the steel, petrochemical, and shipbuilding industries that use high-pressure pipes, and developed a pipe-specific expansion device and auxiliary equipment to use the expansion pipe. We developed an expansion device with a range of 65A to 125A, evaluated the characteristics of the equipment, and manufactured high-pressure pipes made with this device, and obtained the following conclusions. The pressure resistance performance test of the non-welded expansion device was carried out at 32A to 125A, and the pipe pressure resistance test showed good results, and the durability test confirmed the durability of 0.0061 to 0.0063mm. The vibration test of the developed expansion device was measured at 0.3~0.5mm/s, and the noise measurement result was 65.1~65.5 at 32A, 65.2~65.5 at 65A, and 65.4~66.6dB at 125A.
        4,000원
        11.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In light of recent social concerns related to issues such as water supply pipe deterioration leading to problems like leaks and degraded water quality, the significance of maintenance efforts to enhance water source quality and ensure a stable water supply has grown substantially. In this study, scan statistic was applied to analyze water quality complaints and water leakage accidents from 2015 to 2021 to present a reasonable method to identify areas requiring improvement in water management. SaTScan, a spatio-temporal statistical analysis program, and ArcGIS were used for spatial information analysis, and clusters with high relative risk (RR) were determined using the maximum log-likelihood ratio, relative risk, and Monte Carlo hypothesis test for I city, the target area. Specifically, in the case of water quality complaints, the analysis results were compared by distinguishing cases occurring before and after the onset of "red water." The period between 2015 and 2019 revealed that preceding the occurrence of red water, the leak cluster at location L2 posed a significantly higher risk (RR: 2.45) than other regions. As for water quality complaints, cluster C2 exhibited a notably elevated RR (RR: 2.21) and appeared concentrated in areas D and S, respectively. On the other hand, post-red water incidents of water quality complaints were predominantly concentrated in area S. The analysis found that the locations of complaint clusters were similar to those of red water incidents. Of these, cluster C7 exhibited a substantial RR of 4.58, signifying more than a twofold increase compared to pre-incident levels. A kernel density map analysis was performed using GIS to identify priority areas for waterworks management based on the central location of clusters and complaint cluster RR data.
        4,000원
        12.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As various accidents have occurred in underground spaces, we aim to improve the quality validation standards and methods as specified in the Regulations on Producing Integrated Map of Underground Spaces devised by the Ministry of Land, Infrastructure and Transport of the Republic of Korea for a high-quality integrated map of underground spaces. Specifically, we propose measures to improve the quality assurance of pipeline-type underground facilities, the so-called life lines given their importance for citizens’ daily activities and their highest risk of accident among the 16 types of underground facilities. After implementing quality validation software based on the developed quality validation standards, the adequacy of the validation standards was demonstrated by testing using data from two-dimensional water supply facilities in some areas of Busan, Korea. This paper has great significance in that it has laid the foundation for reducing the time and manpower required for data quality inspection and improving data quality reliability by improving current quality validation standards and developing technologies that can automatically extract errors through software.
        4,000원
        13.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to investigate the optimum condition of the autofrettage process for the diesel engine fuel injection pipe, different values of autofrettage pressure, pressure rising time, pressure holding time, and repetition of autofrettage process were applied. Autofrettage was performed by applying the hydrostatic internal pressures of 604MPa, 535MPa, 500MPa on the fuel injection pipe, corresponding to theoretical 50%, 30%, and 20% overstrain levels, respectively. The autofrettage residual stresses in the injection pipe were experimentally determined by using X-ray diffractometer. As the overstrain level increased, the magnitude of compressive residual stress at the bore increased. It was found that the rising time to reach the autofrettage pressure, holding time at the autofrettage pressure, and repeated application of the autofrettage pressure on the pipe had no significant influence on the residual stress distributions.
        4,000원
        14.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We propose a method for developing an in-pipe inspection robot based on multiple inertial sensors. Estimating the position of underground pipelines where satellite signals do not reach remains challenging. High-precision inertial sensors and high-tech mobile robots can be solutions, but their high price limits their general use. We developed an in-pipe inspection robot by combining various low-cost sensors with a microcomputer-based RC car platform. First, we fabricated a multi-inertial sensors module by combining commercial grade low-cost MEMS inertial sensors. The sensor values measured by the multi-inertial sensor are transmitted to the main computer through the MCU, and the attitude angle of the vehicle is finally calculated through the inverse variance weighted average. The travel distance of the robot is estimated by using hall sensors and neodymium magnets attached to the inside of the wheels. Also, we measured the pipe diameter using multiple ultrasonic sensors. We verified the estimation accuracy of each sensor through experiments and consequently estimated the 3D trajectory of the in-pipe robot.
        4,000원
        16.
        2022.10 구독 인증기관·개인회원 무료
        A significant amount of piping is embedded in nuclear power plants (NPPs). In decommissioning these materials must be removed and cleaned. It can then be evaluated for radioactivity content below the release level. MARSSIM presents Derived Concentration Guideline Levels (DCGLs) that meet release guidelines. Calculating DCGL requires scenarios for the placement of embedded pipe and its long-term potential location or use. Some NPPs choose to keep the embedded pipes in the building. Because others will dismantle the building and dispose of the piping in-situ, determining the disposal option for embedded piping requires the use of measurement techniques with the sensitivity and accuracy necessary to measure the level of radioactive contamination of embedded piping and meet DCGL guidelines. The main measuring detectors used in NPPs are gas counters that are remotely controlled as they move along the inside of the pipe. The Geiger-Mueller (GM) detector is a detector commonly used in the nuclear field. Typically, this GM detector used 3-detectors that cover the entire perimeter of the pipe and are positioned at 120-degrees to each other. This is called a pipe crawler. It is very insensitive to gamma and X-ray, only measures beta-emitter and does not provide nuclide identification. The second method is a method using a high-resolution gamma-ray detector. Although not yet commercialized in many places, embedded piping is a scanning method. The technique only detects gamma-emitting nuclides, but some nuclides can be identified. Gamma-ray scanning identifies the average concentration per pipe length by the detector collimator. It is considerably longer than a pipe crawler. In addition, several techniques, including direct measurement of dose rate and radiochemical analysis after scraping sampling, are used and they must be used complementary to each other to determine the source term. Expensive sampling and radiochemical analysis can be reduced if these detectors are used to measure the radioactivity profile and to perform waste classification using scaling factor. In the actual Trojan NPP, a pipe crawler detector was used to survey the activity profile in a 26 foot of an embedded pipe. These results indicate that the geometric averaging of the factors and a dispersion values for each nuclide are constant within the accuracy factors. However, in order to accurately use the scaling factor in waste classification, it must have sample representativeness. Whether the sample through smear or scraping is representative of the radionuclide mixture in the pipe. Since the concentration varies according to the thickness of the deposit and depending on the location of the junction or bend, a lot of data are needed to confirm the reliability of the nuclide mixture. In this study, the reliability of the scaling factor, sampling representativeness and concentration measurement accuracy problems for waste classification in decommissioning NPP were evaluated and various techniques for measuring radioactive contamination on the inner surface of embedded pipes were surveyed and described. In addition, the advantages and limitations of detectors used to measure radioactivity concentrations in embedded piping are described. If this is used, it is expected that it will be helpful in determining the source term of the pipe embedded in the NPPs.
        17.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A heat exchanger refers to a pressure vessel that indirectly exchanges heat between low-temperature/ high-temperature fluids with a solid wall interposed therebetween, and a shell-and-tube cylindrical heat exchanger is generally applied. The shell-and-tube cylindrical heat exchanger is widely used in ships and there is a problem in that the welding area is narrow and welding defects occur a lot due to high-level welding. In particular, in the case of a ship heat exchanger, if a problem occurs in the welding part during operation, the possibility of a safety accident is high, and repair is not easy. In this study, to solve this problem, the GTAW(Gas Tungsten Arc Welding) method was applied to secure the optimum conditions for pipe welding of STS304 material with a thickness of 5.5mm and to conduct a test. Afterwards, in accordance with the ASME rules, welding performance was verified through cross-sectional observation of welds, mechanical property tests, (tensile strength, bending strength, cryogenic impact strength) and non-destructive testing(PT, RT).
        4,000원
        18.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The sewer capacity design have been based on the Huff model or the rational equation in South Korea and often failed to determine optimal capacity, resulting in frequent urban flooding or over-sizing. A time distribution of rainfall (i.e., Huff or ABM method) could be used instead of a rainfall hyetograph obtained from statistical analysis of previous rainfalls. In this study, the Huff method and the ABM method, which predict the time distribution of rain intensity, which are widely used to calculate sewage pipe drainage capacity using the SWMM, were compared with the standard rainfall intensity hyetograph of Seoul. If the rainfall duration was 30 minutes to 180 minutes, the rainfall intensity value calculated by the Huff model tended to be less than the rainfall intensity value of the standard rainfall intensity in the initial 5-10 minutes. As a result, more than 10% to 30% of under-design would be made. In addition, the rainfall intensity value calculated by the Huff model from the section excluding the initial 5-10 minutes of rainfall to the rainfall duration was calculated larger than the value using the standard rainfall intensity equation, which would result in an over-design of 10% to 30%. In the case of a relatively long rainfall duration of 360 minutes (6 hours) to 1,440 minutes (24 hours), it showed an lower rainfall intensity of 60 to 90% in the early stages of rainfall, but the problem of under-design had been solved as the rainfall duration time had elapsed. On the other hand, in the alternating block method (ABM) method, it was found that the rainfall intensity at the entire period at each assumed rainfall duration accurately matched the standard rainfall intensity hyetograph of Seoul.
        4,000원
        20.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해저 석유와 가스 탐사가 점점 더 깊은 수심으로 진행되고 있으며, 해저 파이프라인은 고압 및 고온 조건에서 작동하는 것이 일반적이다. 온도 및 압력 차이로 인하여 파이프 축 방향 힘이 축적되는 현상이 있다. 이러한 현상은 파이프라인을 구속하는 해저면 효과 때문에 파이프라인은 횡 좌굴이 발생하게 된다. 온도가 증가하는 경우 축 방향의 압축 하중이 가해지며 이 하중이 임계 수준에 도달하면 파이프가 수직방향으로 움직이게 된다. 또는 파이프라인의 구조적 완전성을 위태롭게 할 수 있는 횡 방향 좌굴이 발생하는 상황에서, 작 동 중 파이프라인의 구조적 안전함을 보장하기 위해 파이프라인의 상세 구조 강도평가가 수행되어야 한다. 본 연구에서는 해저면의 마찰 효과 및 재료의 열 수축/팽창을 고려한 비선형 구조해석을 상용 유한요소해석 프로그램인 ANSYS를 활용하여 검토하였으며, 외부충격에 의한 횡 방향 좌굴 안전성을 분석하였다. 본 연구의 결과를 통하여 수치 해석적 단순화된 분석 모델을 통하여 해저면의 효과를 고려한 조 건에서의 실제 파이프라인의 붕괴 조건을 예측할 수 있다.
        4,000원
        1 2 3 4 5