검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 87

        81.
        2002.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        마이크로웨이브 추출방법과 환류 냉각 추출방법을 비교한 결과, 물과 에탄올의 혼합용매로 추출한 경우 마이크로웨이브 추출 방법에 의하여 추출시간을 단축시키면서 환류 냉각 추출 방법에서와 같은 수준의 가용성 고형분 및 총 폴리페놀 함량을 갖는 곰취 추출물을 얻을 수 있었다. 마이크로웨이브 추출시 최적 마이크로웨이브 에너지는 120∼150 W 였고 추출시간은 4∼8분이 적당하였다. 추출에 사용한 용매들 가운데 에탄올, 메탄올 보다 물 그리고 물과 에탄올
        82.
        2001.10 KCI 등재 서비스 종료(열람 제한)
        Polyphenol 화합물이 다량 함유된 식물종의 유연관계 분석이나 형질전환 유전자 확인 등을 위해 PCR을 이용할 경우 다량의 재료로부터 신속 간편하게 분리한 DNA를 이용할 수 있는 조건을 설정 하였다. 폴리페놀 함량이 높은 포도, 사과, 복분자와 같은 과수류에서 간편법에 의해 추출된 DNA를 이용한 PCR 반응액에 2%의 BLOTTO를 첨가함으로서 DNA의 재현적 증폭이 가능하였다. 간편 추출 DNA를 이용한 PCR에서 의 BLOTTO효과는 primer, 품종, 식물종에 관계없이 일반적으로 발현되었다. 상추의 형질전환 유전자 검색을 위한 PCR에서 도 BLOTTO 효과가 확인되었다. 따라서 PCR 반응액에 2% BLOTTO를 첨가하면 간편 법 에 의해 추출된 polyphenol 화합물 고함유 식물종의 DNA를 이용하여서도 PCR에 의한 유전배경 및 특정 유전자의 대량 신속 분석이 가능할 것이다.
        83.
        2001.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The antimicrobial and glucosyltransferase(GTase) inhibition activity were searched for 30 species of various folk drugs and by products of food industry. Among them, two species, gallnut and red grape husk water extracts, were selected for the powerful antimicrobial and GTase inhibition activity. The polyphenol fractions of gallnut and red grape husk were showed very greater antimicrobial activity on both Gram(+) and (-), B. subtilis and E. coli. The minimum antimicrobial activity of gallnut polyphenol fraction were 1.0mg for B. subtilis and 3,0mg for E. coli. Red grape husk was 2.0mg for B. subtilis and 3.0mg for E coli. The polyphenol fractions of gall nut and red grape husk were showed powerful GTase inhibition activity. The concentrations of these fractions for 80% inhibition of GTase activity were 1.0810-3/mg/㎖ and 1.0810-2/mg/㎖, respectively. The most abundant compound in these fraction seems to be polyphenol derivatives. From these results, we think that the gallnut and the red grape husk polyphenol fraction had more antimicrobial and anti-plaque activities than artificial synthetic preservatives as an economic point of view.
        84.
        2000.03 KCI 등재 서비스 종료(열람 제한)
        The environment in which a given genotype is grown may influence its grain quality characteristics. When varieties are ~times evaluated over numerous environments, a variety environment interaction usually is observed, but the relative magnitude of environmental(E), genetic(G), and G ~times E effects on quality is unclear. In order to determine relative contribution of genotype, environment, and G ~times E interaction to the variations observed in grain quality characteristics, 18 Korean wheat cultivars and experimental lines were evaluated in two environments in 1998 and 1999. Correlation coefficients between grain quality and agronomic characteristics were also estimated. The analysis of variance for the optical density obtained by reaction bet- ween gliadin and anti-gliadin polyclonal antibody (AGPab) indicated that gliadin content measured by Enzyme-Linked Immunosorbent Assay(ELISA) was significantly in- fluenced by environment and cultivar differences. The significant differences of year and year ~times location were also found. The ratio of the variances associated with environmental effects to the variances associated with genetic effect gave relatively greater influence of environmental factor on gliadin content. The different protein content from same genotype grown in different environment might be associated with degree of storage protein accumulations. Significant relationships between ELISA and protein content, yield, ten spike weight, and ten spike number were detected. Polyphenol oxidase (PPO) activity was significantly influenced by year, location, cultivar and year ~times location. The variance in grain PPO activities among growing years appeared larger than the variation produced by the cultivar examined. This suggested that the growing environment contributed more to variability in grain PPO concentration.
        85.
        1999.12 KCI 등재 서비스 종료(열람 제한)
        The effects of wounding and jasmonic acid(JA) on polyphenol oxidase(PPO) in tomato(Lycopersicon esculentum Mill.) seedlings were investigated. PPO was strongly induced by wounding or JA, and the response was also shown to be systemically induced by wounding. Mechanical wounding in cotyledon or leaf produced a signal that caused the concentration of PPO to increase in the unwounded cotyledon, in the first leaves but not in the second leaves. Severity of wounding and light intensity also affected wound induced change in PPO activity, JA showed a stimulatory effect on the loss of chlorophyll and the rapid increase in PPO activity. The PPO was clearly more active in the wounded leaves than in controls. The potency and specificity of the JA indicate a close relationship between JA and wound-induced changes in PPO in tomato species. JA and abscisic acid(ABA) acted similarly on both unwounded and wounded leaves, but the amount of PPO in the wounded leaves was always more than the respective controls. The highest increase in PPO activity occurred in woundand JA-induced leaves of seedlings kept under bright lighting. Benzyladenine(BA) completely abolished JA- and ABA-induced PPO activity. The results suggest that JA-induced PPO activity is due to de novo PPO synthesis. Histochemical tests for PPO in stems of wound- and JA-treated tomato plants indicate that PPO was localized primarily in the outer cortex and xylem parenchyma. It is concluded that exogenously applied JA acts as stress agents and PPO may be a component of the inducible anti-hervivore defense response.
        87.
        1998.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The chemical structure of low molecule polyphenol of tea was found as explained. Structure decision of pioanthocyanidin was possible to measure 1,700 molecule, hexamer by chemical basic of polyphenol. At present, structure of high molecule than of that can't be suspected and it is concemed that strong astrigent ccnpound of tea is polymer proanthocyanidin. Mush researches was required in structure decision and isolation of high molecule polyphenol complex. Structure decision will develope at the natural products in the furture.
        1 2 3 4 5