검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2018.11 구독 인증기관·개인회원 무료
        Mammalian fetal ovaries contains numerous primordial germ cells, however fewer ones can yield mature oocytes due to apoptosis and follicle atresia. Successful in vitro reconstitution of primordial germ cells has recently had a significant effect in the field of assisted reproductive technologies. However, the regulatory mechanisms underlying oogenesis remain unknown and recapitulation of oogenesis in vitro remains unachieved. Therefore, development of methods for obtaining mature oocytes by culturing the fetal ovaries in vitro could contribute to clarify these mechanisms. We adapt an in vitro system for culturing mouse fetal ovaries that support successful follicle assembly and improve oocyte growth and maturation. Ovarian tissues from 12.5 days postcoitum (dpc) fetal mice were cultured in vitro and the matured oocytes were differentiated from primordial germ cells after a 31 days culture period. Our results demonstrate that mouse fetal germ cells are able to form primordial follicles with artificial ovarian cells, and that oocytes within the growing follicles are able to mature normally in vitro. Taken together, this in vitro culture system is expected to aid in the development of new strategies to identify the reasons behind failure of follicle assembly and offer a platform for innovative research into preservation of female germ cells and conservation of endangered species.
        2.
        2016.10 구독 인증기관·개인회원 무료
        Germ cells originate outside of the fetal gonads and migrate toward the genital ridges through the embryonic tissue. Germ cell is the most important and valuable cell in livestock because germ cell is the only cell type that can transfer the genetic information and content into the next generation. In this study, we established the primordial germ cell (PGC) lines derived from the fetal gonads of 6 day-old-embryonic chicks, and then cryopreserved for long-term storage. First, we determined each chick embryo sex by genomic PCR with DNA extracted from blood. After dissociation of the whole gonads from individual embryos, total gonadal cells were plated into the culture dish and cultured with 20% fetal bovine serum-contained culture media. PGC lines were derived from three different chicken strains; White Leghorn (WL), Korean Oge (KO), and a commercial line, Hyline. There was no significant difference between the efficiencies of the PGC line derivation according to the different chicken strains. Thus, PGC culture and long-term storage system could be applied to maintain the endangered avian species and also produce the offspring through germline chimera production system.
        3.
        2011.10 구독 인증기관·개인회원 무료
        Unstable Epigenetic reprogramming was DNA methylation, imprinting, RNA silencing, co-valent modifications of histones and remodelling by other chromatin-associated complexes. After fusion with an enucleated oocyte, a differentiated somatic cell can restructure its genetic program and acquire totipotent characteristics. However, these cases happen only with low frequency. primordial germ cells (PGC) was effectively remove of epigenetic modifications in the genetic totipotency which is necessary for the development. The present study was in vitro development of reconstruct PGC NT embryos compared with somatic cell NT embryos. The rate of cleavage did not differ between NT embryos from PGC and somatic cells (87.26 vs 91.36%). However, the rate of development to the blastocyst stage was significantly higher in PGC cell NT than somatic cell NT (31.03 vs 19.27%). PGC from a slightly younger stage of development have succeed to promote normal development of recipient eggs. This difference in results between germ cell and somatic cell nuclear transfers could only be a reflection of intimate differences in their reprograming. These results suggest that PGC NT embryos are significantly higher for the in vitro development. Furthermore, These study may represent an approach towards achieving better production of transgenic animal.
        10.
        1994.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        원시생식세포(primordial germ cell; PGC)는 성성숙 이후에 기능을 갖는 생식세포의 근원이 되는 세포로서, 다능성을 갖고 있는 것으로 알려져 있다. 그러므로 chimera 및 유전자 변환동물 생산을 위해 널리 사용되어 온 배아주(embrynic stem; ES)세포를 대신할 다른 세포계라고 생각되어져 많은 연구가 진행되고 있다. 본 실험은 체외배양을 통하여 원시생식세포의 증식과 확립을 위해 배양조건을 구명하고, 또한 성장인자의 효과를 검
        4,000원
        11.
        2013.08 서비스 종료(열람 제한)
        In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy which minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa and nanos) and micro-injected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for selffertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to various other animals.
        12.
        2013.08 서비스 종료(열람 제한)
        Pluripotent cells are categorized as either "naive" or "primed" based upon their pluripotent status. According to previous studies, embryonic stem cells and embryonic germ cells are identified as naive pluripotent stem cells and epiblast stem cells are identified as primed pluripotent stem cells. In a permissive species such as the mouse, naive and primed pluripotent stem cells can be derived from embryos without genetic manipulations. In non-permissive species such as humans and pigs, primed pluripotent cells are only established from embryos. However, previous studies have shown that the embryonic germ cells of non-permissive species share similar morphology and features with naive pluripotent cells. For these reasons porcine embryonic germ cells (pEGCs) may provide a useful cell source for comparative studies on naive pluripotent cells in non-permissive species. In this study, we attempted to establish and characterize porcine embryonic germ cells. Consequently, an embryonic germ cell line was derived from the genital ridges of a porcine dpc 30 fetus in media containing bFGF. This cell line displayed a dome-shaped colony morphology. The cell line was maintained in a stable condition over an extended time period and was able to differentiate into the three germ layers in vitro. Pluripotency markers such as OCT4, SOX2, NANOG and SSEA4 were expressed in these pEGCs. Similar with pESCs, Mek/Erk signaling pathway were activated by bFGF in the cultured pEGCs. In conclusion, we were able to successfully derive embryonic germ cells from genital ridges of a porcine fetus. Unlikely naive pluripotent cells such as mESCs, pluripotency of pEGCs were regulated by Mek/Erk signaling pathway activated by bFGF. This cell line could potentially be used as naive pluripotent cell source for comparative study with porcine embryonic stem cells and other pluripotent cell lines. As porcine pluripotent cells, pEGCs could be useful candidates for preliminary studies of human disease as well as a source for generating transgenic animals.
        13.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        본 연구는 생식선 키메라 생산효율을 높이기 위한 방법으로 busulfan 가온 주입법을 이용하여 효과적인 원시생식 세포의 이동능력을 검증하였다. 효율적인 생식선 키메라 닭 생산에서 중요한 요건 중 하나인 공여체 원시생식세포의 생존율을 측정한 실험에서는 시간이 지남에 따라 생존율에 변화를 보였으나, 평균 을 유지하고 있었으며, busulfan 처리 유무에 따른 공여체 원시생식세포 이동능력은 형광염색 후 주입한 실험에서 대조구가 4.8%인 반면 실험구는 2
        14.
        2001.09 서비스 종료(열람 제한)
        One of the problems associated with in vitro culture of primordial gern cells (PGCs) is the large loss of cells during the initial period of culture. This study characterized the initial loss and determined the effectiveness of two classes of apoptosis inhibitors, protease inhibitors and antioxidants, on the ability of the porcine PGCs to survive in culture. Results from electron microscopic analysis and in situ DNA fragmentation assay indicated that porcine PGCs rapidly undergo apoptosis when placed in culture. Additionally, \ulcorner2-macroglobulin, a protease inhibitor and cytokine carrier, and N-acetylcysteine, an antioxidant, increased the survival of PGCs in vitro. While other protease inhibitors tested did not affect survival of PGCs, all antioxidants tested improved survival of PGCs (p<0.05). Further results indicated that the beneficial effect of the antioxidants was critical only during the initial period of culture. Finally, it was determined that in short-term culture, in the absence of feeder layer, antioxidants could partially replace the effect(s) of growth factors and reduce apoptosis. Collectively, these results indicate that the addition of \ulcorner2-macroglobulin and antioxidatns can increase the number of PGCs in vitro by suppressing apoptosis.