검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 151

        4.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porphyromonas gingivalis, a major pathogen of chronic periodontitis, colonizes in subgingival crevice and affects surrounding oral tissues, especially in periodontitis patients. Oral cancer mainly occurs in old-aged persons, and are exposed to the P. gingivalis, released from periodontitis, one of the most common inflammatory disease of oral cavity. Thus oral cancer cells may be infected with P. gingivalis, and its biologic behavior are autologously and/or heterogeneously modulated by altering gene expression. Exosomes which are derived from cells contain not only coding genes but also non-coding RNAs such as long non-coding RNAs, miRNA, and piRNAs. Here, to investigate the effect of P. gingivalis on oral cancer cells and to gain insight into the crosstalk between inflammatory signal from tumor microenvironment and oral cancer, we observed miRNA profiles of exosomes from P. gingivalis–infected oral cancer cells. Upregulation of 6 miRNAs, miR-203-3p, miR-6516-3p, miR-483-5p, miR-1275, miR-8485, and miR-19a-3p, were observed whereas 14 miRNAs including let-7a-3p, miR-106a-5p were downregulated. In addition, KEGG pathway analysis using the upregulated- and downregulated- miRNAs showed association with cell adhesion molecules pathway and ECM-receptor interaction pathway, respectively. These findings suggest that P. gingivalis could modulate biologic behavior of oral cancer cells through changes of exosomal miRNAs.
        4,000원
        7.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지난 10년 동안, 이중 가닥 RNA (double-stranded RNA, dsRNA)를 이용한 특정 유전자 발현 간섭(RNA interference, RNAi) 기술은 의약품 개발뿐만 아니라 작물보호 분야에 해충방제부터 익충보호까지 다양하게 그 기술이 사용되어 왔다. 그동안 학계 및 산업체에서 활발히 연 구되어 온 RNAi기술을 이용한 작물 및 익충보호제는 상용화를 눈앞에 두고 있다. 미래 농업 시장에서 해충방제제와 익충보호제로써의 개발을 위한 RNAi의 기술적 응용은 상당한 잠재력을 가지고 있지만, 현장에 직접 사용되기에는 아직 여러 가지 한계점이나 극복해야 할 과제가 남아있 다. 본 리뷰에서는 최근에 활발히 진행되고 있는 작물보호제 및 익충보호제(protection of crops and beneficial insects)로써의 dsRNA의 다양 한 활용과 그 잠재성(potential)을 소개하고자 한다.
        4,000원
        10.
        2019.04 구독 인증기관·개인회원 무료
        In moth, pheromone biosynthesis activating neuropeptide (PBAN) regulates pheromone biosynthesis by binding to its receptor (PBANr). In this study, we cloned a PBANr gene (Mvi-PBANr) from sex pheromone gland in M. vitrata, which encodes 475 amino acid and includes 7 transmembrane domains. As a results of phylogenetic analysis, Mvi-PBANr is clustered with lepidopteran PBANrs. Mvi-PBANr was investigated for the effect of pheromone biosynthesis via RNA interference (RNAi), gas chromatography (GC) and bioassay. Consequently, expression level of Mvi-PBANr suppressed via RNAi, resulting in decrease pheromone component (E10E12-16:Ald). Mating rate was also reduced when performing the RNAi. These results revealed that Mvi-PBANr played important role in the pheromone biosynthesis in M. vitrata, and Mvi-PBANr can be used as new pest control targets.
        11.
        2019.04 구독 인증기관·개인회원 무료
        Prostaglandin E2(PGE2) is an autocrine and paracrine signal in insects and other animals. Its signal pathways in target cells are well understood in mammalian system but not in insects. Here, we assessed PGE2 signaling in hemocytes of Spodoptera exigua through knocking-down of signal component genes by RNA interference (RNAi) and knocking-out (KO) of PGE2 receptor using CRISPR-Cas9. From S. exigua transcriptome, we selected hemocyte signaling components and analyzed their functions in cellular immune responses through RNAi. KO mutant against PGE2 receptor exhibited severely hampered larval development and adult fecundity.
        12.
        2019.04 구독 인증기관·개인회원 무료
        Frankliniella occidentalis is a major pest in agriculture. Following overuse of insecticides, high resistance has developed due to its high reproduction rate and short generation time. To control the resistant strains of the thrips, the ingestion RNAi- based control was established. A total of 67 genes were selected, and their double-stranded RNAs (dsRNA) were delivered to thrips via the leaf disc-feeding method. Among the genes screened, the dsRNA of Toll-like receptor 6 (TLR6) and coatomer protein subunit epsilon (COPE) resulted in the highest mortality (3.8- and 2.8-fold faster LT50 compared to control, respectively) when ingested by thrips. The dsRNA-fed thrips showed 53% and 83% reduced transcription levels of TLR6 and COPE, respectively. This result demonstrates that the observed mortality of thrips following dsRNA ingestion was due to RNAi, and this lethal genes can be employed as a practical tool to control thrips in the field.
        17.
        2018.11 구독 인증기관·개인회원 무료
        Because of the physiological and immunological similarities between pigs and humans, porcine embryonic stem cells (ESCs) have been identified as important candidates in preliminary studies on human disease. A comparative understanding of pig ESCs with the human is required to achieve these goals. To gain insights into pig stem cells, the transcriptome of pig ES-like cells were compared with pig preimplantation embryos and human/mouse pluripotent stem cells by RNA-seq analysis. As a result, pig stem cells were more similar to late epiblasts of pig preimplantation embryos than early ICM as revealed by transcriptome analysis, suggesting that pig stem cells are in a developmentally primed state. Moreover, the physiological and biological functions of pig ESCs were more similar to those of human PSCs than to those of mouse PSCs, as determined by direct differentiation and GO/KEGG term analysis. Overall, our data indicate that pig ESCs are in a primed pluripotent state resembling human PSCs. Our findings will facilitate both the development of large animal models for human stem cell therapy and the generation of pluripotent stem cells from other domestic animals for agricultural use. This work was supported by the Korea Institute of Planning and Evaluation for Technology in food, agriculture, forestry, and fisheries (IPET) through the Development of High Value-Added Food Technology Program funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA; 118042-03-1-HD020), and partially supported by the grants from the Agenda Program of Rural Development Administration, Republic of Korea (No. PJ01362402)
        18.
        2018.11 구독 인증기관·개인회원 무료
        Recent transcriptome analyses have shown that long non-coding RNAs (ncRNAs) play prevalent roles in transcriptional regulation. We have reported that promoter-associated ncRNAs (pancRNAs) activate the partner gene expression via local epigenetic changes. Here, we identify thousands of genes under the pancRNA-mediated transcriptional regulation in five mammalian species in common. In the mouse, 1) pancRNA-partnered genes show tissue-specific expression pattern, 2) expression of pancRNAs significantly enriched H3K4me3 and H3K27ac marks towards the partner gene expression, 3) H3K4me1 marks the pancRNA-partnered genes regardless of their expression level, and 4) C- or G-skewed motifs were exclusively overrepresented between -200 and -1 bp relative to the transcription start sites of pancRNA-partnered genes. More importantly, the comparative transcriptome analysis among five different mammalian species using a total of 25 counterpart tissues showed that overall pancRNA expression profile exhibited extremely high species-specificity compared to that of mRNA, suggesting that a significant number of pancRNAs contributed to the enhancement of a set of partner genes' expression in a sequence-specific manner. We conclude that the gain and/or loss of gene-activation-associated pancRNA repertories, caused by formation or disorganization of the genomic GC-skewed structure, finely shapes tissue-specific pattern of gene expression according to a given species.
        19.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of CXCR7, a seven-transmembrane G-protein coupled chemokine receptor, which binds with high affinity to chemokine CXCL11 and CXCL12 in oral cancer cells and the effect of transient CXCR7-downregulation on proliferation and migration of oral squamous cell carcinoma (OSCC) cells have not been reported. The aim of the present study was to evaluate the effects of CXCR7 on an OSCC cell line. In this study, we down-regulated CXCR7 in the KOSCC25B OSCC cell line by siRNA. In vitro cell proliferation and migration assays were used to investigate the effect of CXCR7- downregulation on cell proliferation and migration in si.KOSCC25B cells. The CXCR7 down-regulated OSCC cells grew significantly slower than the negative control siRNA transfected KOSCC25B cells (p<0.05). Additionally, migration of si.KOSCC25B cells decreased significantly compared with non-transfected KOSCC25B cells (p<0.007). These results suggest that down-regulation of CXCR7 induces anti-proliferative and anti-migratory effects in OSCC, and that CXCR7 may be a useful target molecule for the treatment of OSCC.
        4,000원
        20.
        2018.04 구독 인증기관·개인회원 무료
        The varroa mite, Varroa destructor, is a small ectoparasitic mite which attacks honeybee, Apis mellifera, and also known to harbor small RNA viruses which infect honeybees. To survey the transcriptome of varroa mite, total RNA of female adult mites was subjected to RNA-seq to construct an in silico cDNA library. 2 × 8.3 Gbase of quality filtered paired-end nucleotide sequences were obtained to construct 28,302 of protein-coding contigs by de novo assembly, and subsequent BLAST search revealed the viruses infect honeybee or associated with varroa mites. Six of the contigs showed high sequence identity to Iflavirus, picorna-like virus, rhabdovirus, and macula-like virus were discovered. It implies that the viral flora in varroa mites and honeybees might be more complex than previously studied, and suggests the importance of further virome studies for better understanding of honeybee health.
        1 2 3 4 5