검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        2.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 발가락 지방 소거 검사 시에 종종 저품질의 영상이 획득되는 경우에 주목하여 다양한 조절인자들을 조절하지 않아도 손쉽게 영상 품질을 향상하는 방법을 고안해보았다. 팬텀과 지원자를 대상으로 발 전용 코일만 사용한 경우와 추가 코일을 결합 사용한 경우의 영상을 획득 후 신호대 잡음비(SNR)를 측정하여 비교하였다. 시상면, 관상면, 축상면 모두 T2 Dixon을 시행하였고, 시상면의 경우 T2 지방 소거(FS)와 T1 지방 소거를 추가 시행하였다. 팬텀 검사에서 추가 코일을 결합 사용 시 SNR은 시상면의 경우 T2 Dixon water는 1.21배, T2 FS은 1.22배, T1 FS은 1.17배 향상되었다. 관상면 T2 Dixon water는 1.15배, 축상면 T2 Dixon water는 1.47배 향상되었다. 지원자 검사에서 추가 코일을 결합 사용 시 SNR은 시상면의 경우 T2 Dixon water는 2.07배, T2 FS은 5.17배, T1 FS은 3.20배 향상되었다. 관상면 T2 Dixon water는 1.20배, 축상면 T2 Dixon water는 1.37배 향상되었다. 추가 코일을 결합 사용하였을 때 모든 지방 소거 검사 및 모든 방향에서 SNR 향상의 결과를 얻을 수 있었다. 결론적으로 사용자의 고도 기술 및 추가 검사 시간이 필요하지 않고도 SNR을 향상할 수 있음을 의미한다.
        4,000원
        3.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The amount of waste water generated from the domestic sources is consistently increasing in proportion to economic growth, and the conventional activated sludge process is widely being used for general waste water treatment. But the ministry of environment becomes stringthent treatment standards of N and P (less than 20mg/L of N, 2mg/L of P) to prevent the eutrophication of lake water, and therefore highly advanced treatment technology is required not only in the existing treatment plants where the activated sludge process is being used, but also in newly constructed treatment plants for the treatment of N and P. This study is aimed at highly operating the engineering technology method was developed by domestic to eliminate N and P at the same time. Experiments were conducted in the treatment plant located in Yong In city. The bioreactor was started from the principal equipment for the elimination of N and P and the elimination of organic compounds. It consists of an internal recycle piping from the end of the aerobic tank to the anoxic tank and external recycle piping from the final settling basin to the denitrification tank. By experiment of 4 types separate inflow of waste water to the denitrification tank and the anaerobic tank, and changes in staying time at the anoxic tank and the aerobic tank, the elimination of organic compounds in each type and the relationship in the efficiency between the elimination of N and P were researched.
        4,000원
        4.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Theoretical total nitrogen removal efficiency and reactor volume ratio in oxic-anoxic-oxic system can be found by influent water quality in this study. The influent water quality items for calculation were ammonia, nitrite, nitrate, alkalinity, and COD which can affect nitrification and denitrification reaction. Total nitrogen removal efficiency depends on influent allocation ratio. The total nitrogen removal follows the equation of 1/(1+b). Optimal reactor volume ratio for maximum TN removal efficiency was expressed by those influent water quality and nitrification/denitrification rate constants. It was possible to expect optimal reactor volume ratio by the calculation with the standard deviation of ±14.2.
        4,000원
        5.
        2004.07 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to remove organics and nutrients using 2 stage intermittent aeration reactor. First reactor, using suspended microbial growth in intermittent aeration instead of anaerobic reactor in the typical BNR process, used minimum carbon source to release P, and it was possible to reduce ammonia loading going to second reactor. In the second reactor, using moving media intermittent aeration, it was effective to reduce nitrate in non-aeration time by attached microorganisms having long retention time. In aeration time, nitrification and P uptake were taken place simultaneously. From the experiment, two major results were as follows. First, the removal of organics was more than 90%, and optimum aeration/non-aeration time ratio for organic removal was corresponded with aeration/non-aeration time ratio for nitrogen removal. Second, in the first reactor, optimum aeration/non-aeration time ratio was 15/75 (min.) because it was necessary to maintain 75 min. of non-aeration time to suppress of impediment of return nitrate and to lead release of phosphate. In the second reactor, optimum aeration/non-aeration time ratio was 45/90 (min.).
        6.
        2002.12 KCI 등재 서비스 종료(열람 제한)
        This study was focused on the investigation of the characteristics of organics and nitrogen removal with the recycle ratio in anoxic/oxic(A/O) packed bed process that consisted of the anoxic reactor and the aerobic reactor. As increasing the recycle ratio by 0.5, 1.0, 2.0, the COD removal efficiency increased by 94.0%, 98.5%, 98.8% respectively. The aerobic reactor showed the perfect nitrification efficiency by 98.5%, 99.2%, 98.0% respectively. The T-N removal efficiency with the recycle ratio, increased by 56%, 67%, 70% respectively. As increasing the recycle ratio by 0.5, 1.0, 2.0, T-P removal efficiency decreased by 62.1%, 57.4%, 51.3% respectively. The process by releasing the stored phosphorus in the anoxic reactor and uptaking the excess phosphorus in the aerobic reactor, occurred well comparatively when recycle ratio is 0.5. But this process did not occur when the recycle ratio is 1.0 and 2.0. And optimum pH of nitrification was about 6~7 and alkalinity decreased as nitrification rate increased. As increasing the recycle ratio in the anoxic reactor, DO concentration and ORP increased.