검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 335

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Considering the difficulties of the manufacturing industry by improving production efficiency in the era of high wages and aging in domestic automation facilities, automation facilities are considered an irreversible trend, but many serious related disasters are occurring due to the problems of increasing automation facilities due to the enlargement of manufacturing processes, line-up, and automation. The purpose of this study is to review the usage conditions and safety measures for industrial robots that are experiencing serious industrial accidents and are expected to continue to increase in facilities among automation facilities at the automation industrial site and propose ways to ensure the fundamental safety of the facilities at all times The suggestions are as follows. The purpose is to prevent safety accidents in advance by applying safety door aids to industrial sites and installing additional safety devices in safety slide door lock systems applied to safety fence doors of new and already installed facilities to detach safety keys and ensure that workers carry them at all times.
        4,000원
        2.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to ensure the structural integrity of a canister to be used in a dry storage system currently being developed in Korea. Based on burnup and cooling periods, the canister is designed with 24 bundles of spent nuclear fuel stored inside it. It is a cylindrical structure with a height of 4,890 mm, an internal diameter of 1,708 mm, and an inner length of 4,590 mm. The canister lid is fixed with multiple seals and welds to maintain its confinement boundary to prevent the leakage of radioactive waste. The canister is evaluated under different loads that may be generated under normal, off-normal, and accident conditions, and combinations of these loads are compared against the allowable stress thresholds to assess its structural integrity in accordance with NUREG-2215. The evaluation result shows that the stress intensities applied on the canister under normal, off-normal, and accident conditions are below the allowable stress thresholds, thus confirming its structural integrity.
        4,300원
        3.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A transfer cask serves as the container for transporting and handling canisters loaded with spent nuclear fuels from light water reactors. This study focuses on a cylindrical transfer cask, standing at 5,300 mm with an external diameter of 2,170 mm, featuring impact limiters on the top and bottom sides. The base of the cask body has an openable/closable lid for loading canisters with storage modules. The transfer cask houses a canister containing spent nuclear fuels from lightweight reactors, serving as the confinement boundary while the cask itself lacks the confinement structure. The objective of this study was to conduct a structural analysis evaluation of the transfer cask, currently under development in Korea, ensuring its safety. This evaluation encompasses analyses of loads under normal, off-normal, and accident conditions, adhering to NUREG-2215. Structural integrity was assessed by comparing combined results for each load against stress limits. The results confirm that the transfer cask meets stress limits across normal, off-normal, and accident conditions, establishing its structural safety.
        4,600원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, due to the expansion of the logistics industry, demand for logistics automation equipment is increasing. The modern logistics industry is a high-tech industry that combines various technologies. In general, as various technologies are grafted, the complexity of the system increases, and the occurrence rate of defects and failures also increases. As such, it is time for a predictive maintenance model specialized for logistics automation equipment. In this paper, in order to secure the operational safety and reliability of the parcel loading system, a predictive maintenance platform was implemented based on the Naive Bayes-LSTM(Long Short Term Memory) model. The predictive maintenance platform presented in this paper works by collecting data and receiving data based on a RabbitMQ, loading data in an InMemory method using a Redis, and managing snapshot DB in real time. Also, in this paper, as a verification of the Naive Bayes-LSTM predictive maintenance platform, the function of measuring the time for data collection/storage/processing and determining outliers/normal values was confirmed. The predictive maintenance platform can contribute to securing reliability and safety by identifying potential failures and defects that may occur in the operation of the parcel loading system in the future.
        4,200원
        5.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is very important to evaluate how the functions of products, facilities, and spaces affect human life. The evaluation of these actions has legal regulations such as certification, inspection, and diagnosis, and the degree of quality, safety, and excellence of the results is announced. This study sought to secure safety through efficient system operation by reviewing safety-related certification systems established and implemented by each government department in Korea and analyzing the characteristics of each system and similarities between systems. There was also an aspect of cross-checking safety through the certification and diagnosis system implemented by each ministry, but it was confirmed that the efficiency of the system should also be considered in terms of overlapping application. Therefore, when securing safety is confirmed based on each safety-related law, active alternatives such as exemption, substitution, delegation, etc. should be presented.
        4,000원
        6.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The public safety management guidelines were introduced in 2019 and continue to be dedicated to advancing comprehensive measures for public safety management, with a primary focus on prioritizing the safety and well-being of the public within governmental institutions. To achieve this goal, our previous study developed a establishment procedure of risk assessment-based safety inspection system for public institutions that order construction projects and applied it to highway construction projects to evaluate its effectiveness. To enhance the practicality of the establishment procedure, it is essential to collect and analyze feedback from stakeholders regarding its performance and suitability. This study conducted a survey involving 200 participants who had experience with the establishment procedure, and performed statistical analyses to evaluate its performance and applicability. The survey results indicated that the participants reported a high level of satisfaction (scoring 4 and above on a 5-point Likert scale) in several areas: specialization of safety inspection items for different types of work (with a satisfaction rate of 65%), the evaluation process for safety ratings (64.5%), and their willingness to recommend the procedure to other institutions (75.5%). In the factor analysis with Varimax rotation, two factors emerged: (1) a specialization factor related to safety inspection items, and (2) a grading factor associated with safety evaluation results. Regression analyses of these factors unveiled significant positive relationships with improvements in safety and health performance, including the prevention of fatal accidents, heightened safety responsibility, and raised safety inspection standards. The establishment procedure of safety inspection system developed in our previous study can play a crucial role in reducing accidents resulting in fatalities and injuries at construction sites, ultimately contributing to a safer working environment for all involved parties.
        4,000원
        11.
        2023.11 구독 인증기관·개인회원 무료
        One of the important components of a nuclear fuel cycle facility is a hot cell. Hot cells are engineered robust structures and barriers, which are used to handle radioactive materials and to keep workers, public, and the environment safe from radioactive materials. To provide a confinement function for these hot cells, it is necessary to maintain the soundness of the physical structure, but also to maintain the negative pressure inside the hot cell using the operation of the heating, ventilation, and air conditioning (HVAC) systems. The negative pressure inside the hot cells allows air to enter from outside hot cells and limits the leakage of any contaminant or radioactive material within the hot cell to the outside. Thus, the HVAC system is one of the major components for maintaining this negative pressure in the hot cell. However, as the facility ages, all the components of the hot cell HVAC system are also subject to age-related deterioration, which can cause an unexpected failure of some parts. The abnormal operating condition from the failure results in the increase of facility downtime and the decrease in operating efficiency. Although some major parts are considered and constructed in redundancy and diversity aspects, an unexpected failure and abnormal operating condition could result in reduction of public acceptance and reliability to the facility. With the advent of the 4th Industrial Revolution, prognostics and health management (PHM) technology is advancing at a rapid pace. Korea Hydro & Nuclear Power, Siemens, and other companies have already developed technologies to constantly monitor the integrity of power plants and are applying the technology in the form of digital twins for efficiency and safety of their facility operation. The main point of PHM, based on this study, is to monitor changes and variations of soundness and safety of the operation and equipment to analyze current conditions and to ultimately predict the precursors of unexpected failures in advance. Through PHM, it would be possible to establish a maintenance plan before the failure occurs and to perform predictive maintenance rather than corrective maintenance after failures of any component. Therefore, it is of importance to select appropriate diagnostic techniques to monitor and to diagnose the condition of major components using the constant examination and investigation of the PHM technology. In this study, diagnostic techniques are investigated for monitoring of HVAC and discussed for application of PHM into nuclear fuel cycle facilities with hot cells.
        12.
        2023.11 구독 인증기관·개인회원 무료
        Over the years, in the field of safety assessment of geological disposal system, system-level models have been widely employed, primarily due to considerations of computational efficiency and convenience. However, system-level models have their limitations when it comes to phenomenologically simulating the complex processes occurring within disposal systems, particularly when attempting to account for the coupled processes in the near-field. Therefore, this study investigates a machine learning-based methodology for incorporating phenomenological insights into system-level safety assessment models without compromising computational efficiency. The machine learning application targeted the calculation of waste degradation rates and the estimation of radionuclide flux around the deposition holes. To develop machine learning models for both degradation rates and radionuclide flux, key influencing factors or input parameters need to be identified. Subsequently, process models capable of computing degradation rates and radionuclide flux will be established. To facilitate the generation of machine learning data encompassing a wide range of input parameter combinations, Latin-hypercube sampling will be applied. Based on the predefined scenarios and input parameters, the machine learning models will generate time-series data for the degradation rates and radionuclide flux. The time-series data can subsequently be applied to the system-level safety assessment model as a time table format. The methodology presented in this study is expected to contribute to the enhancement of system-level safety assessment models when applied.
        13.
        2023.11 구독 인증기관·개인회원 무료
        The operation time of a disposal repository is generally more than one hundred years except for the institutional control phase. The structural integrity of a repository can be regarded as one of the most important research issues from the perspective of a long-term performance assessment, which is closely related to the public acceptance with regard to the nuclear safety. The objective of this study is to suggest the methodology for quantitative evaluation of structural integrity in a nuclear waste repository based on the adaptive artificial intelligence (AI), fractal theory, and acoustic emission (AE) monitoring. Here, adaptive AI means that the advanced AI model trained additionally based on the expert’s decision, engineering & field scale tests, numerical studies etc. in addition to the lab. test. In the process of a methodology development, AE source location, wave attenuation, the maximum AE energy and crack type classification were subsequently studied from the various lab. tests and Mazars damage model. The developed methodology for structural integrity was also applied to engineering scale concrete block (1.3 m × 1.3 m × 1.3 m) by artificial crack generation using a plate jacking method (up to 30 MPa) in KURT (KAERI Underground Research Tunnel). The concrete recipe used in engineering scale test was same as that of Gyeongju low & intermediate level waste repository. From this study, the reliability for AE crack source location, crack type classification, and damage assessment increased and all the processes for the technology development were verified from the Korea Testing Laboratory (KTL) in 2022.
        14.
        2023.11 구독 인증기관·개인회원 무료
        In order to ensure the long-term safety of a deep geological repository, the performance assessment of the Engineered Barrier System (EBS) considering a thermal process should be performed. The maximum temperature at the side wall of a disposal canister for the technical design requirement should not exceed 100°C. In this study, the thermal modelling was conducted to analyze the effects of the thermal process from a disposal canister to the surrounding near-field host rock using the PFLOTRAN code. The mesh was generated using the LaGriT code and the material properties were assigned by applying the FracMan code. Initial conditions were set as the average geothermal gradient (25.7°C/km) and an average surface temperature (14.7°C) in Korea. The highest temperature was observed at the middle of the canister side wall. The temperature of the buffer was lower than that of the canister, and the temperature increase of the deposition tunnel and the host rock was insignificant due to the lower effect of the heat source. The result of the thermal evolution of the EBS represented the highest thermal effects in the vicinity of the canister. In addition, the thermal effects were largely decreased after 10 years of the entire simulation period. It demonstrated that the model took 3 years to heat up the buffer around the canister. The temperature at the canister side wall increased until 3 years and then decreased after that time. This is because that the radioactive decay heat from the heat source was emitted enough to raise the overall temperature of the EBS by 3 years. However, the decay heat rate of the canister decreased exponentially with the disposal time and then its decay heat was not emitted enough after 3 years. In conclusion, the peak temperature results of the EBS were lower than 70°C to meet the technical design requirement.
        15.
        2023.11 구독 인증기관·개인회원 무료
        According to the second high-level radioactive waste management national basic plan announced in December 2021, the reference geological disposal concept for spent nuclear fuels (SNF) in Korea followed the Finnish concept based on KBS-3 type. Also, the basic plan required consideration of the development of the technical alternatives. Accordingly, Korea Atomic Energy Research Institute is conducting analyses of various alternative disposal concepts for spent nuclear fuels and is in the final selection stage of an alternative disposal concept. 10 disposal concepts including reference concept were considered for analysis in terms of disposal efficiency and safety. They were reference concept, mined deep borehole matrix, sub-seabed disposal, deep borehole disposal, multi-level disposal, space disposal, sub-sea bed disposal, long-term storage, deep horizontal borehole disposal, and ice-sheet disposal. Among them, first 4 concepts, mined deep borehole matrix, sub-seabed disposal, deep borehole disposal, multi-level disposal, were selected as candidate alternative disposal concepts by the evaluation of qualitative items. And then, by the evaluation of quantitative and qualitative items with specialists, multi-level disposal concept was being selected as a final alternative disposal concept. Design basis and performance requirements for designing alternative disposal systems were laid in the previous stage. Based on this, the design strategy and main design requirements were derived, and the engineered barrier system of a high-efficiency disposal concept was preliminary designed accordingly. In addition, as an alternative disposal concept, performance targets and related requirements were established to ensure that the high-efficiency repository system and its engineered barrier system components, such as disposal containers, buffer bentonites, and backfill perform the safety functions. Items that qualitatively describe safety functions, performance goals, and related requirements at this stage and items whose quantitative values are changed according to future test results will be determined and updated in the process of finalizing and specifically designing an alternative highefficiency disposal system.
        16.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2021년 7월 자치경찰제가 실시되면서, 지역 안전에 대한 관심이 고조 되었다. 지금까지 지역 안전은 전통적 의미의 치안 관점에서 접근하였으 나, 안전에 대한 여성의 두려움이 증가하면서, 지역에서의 안전이 더이상 치안의 차원에 머무를 수 없게 되었다. 그러나, 지역 안전을 확인할 수 있는 안전지표는 안전에 대한 취약성을 주로 측정하고 있어, 여성의 범 죄에 대한 두려움이나 예방적 차원의 지표는 포함되어 있지 않았다. 따 라서, 본 연구는 지역의 안전을 측정할 수 있는 새로운 안전지표의 구성 이 필요하며, 새로운 안전지표는 성인지적 관점의 적용으로부터 출발하 였다. 새로운 안전지표는 기존 안전이론과 함께 성인지 감수성 이론에 기반하여, 4개 영역 22개 지표를 구성하였다. 이 연구는 새로운 안전지 표를 개발하기 위한 것으로 지표가 적합한지를 탐색적으로 조사하였다. 이를 위해 성인지 전문가와 자치경찰 전문가를 대상으로 델파이 조사를 실시한 후 적합한 지표를 제시하였다. 조사 결과, 영역별 적합도는 높은 편이었고, 22개 세부 지표 가운데 14개 지표는 적합, 1개 지표는 부적 합, 7개 지표는 고려할 필요가 있는 것으로 나타났다. 이러한 결과는 향 후 자치경찰제 실시에 따른 지역 안전 지표를 구성하는 데 기여할 것으 로 기대할 수 있다.
        6,600원
        17.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Public institutions have a responsibility to ensure the safety of their employees and the public. One way to do this is to implement a systematic safety inspection system based on risk assessments and continuous improvements. This study developed a systematic safety inspection system for public institutions that are ordered construction projects. The proposed system in this study consists of a three-step process: (1) developing safety grade evaluation tables, (2) preparing and conducting safety inspections, and (3) evaluating and improving safety management grades. The first step is to develop safety grade evaluation tables by analysis and diagnosis of the construction site's work type, disaster statistics, and related laws. The second step is to conduct safety inspections using the developed evaluation tables. The third step is to determine the safety management grade based on the results of the safety inspection, and to improve risk factors found during the safety evaluation. The proposed system was implemented in highway construction projects carried out by public institutions. The results showed that the proposed system has two major effects: (1) reducing accident-related deaths and injuries, (2) improving safety management levels by continuous evaluation and improvement. The proposed system can be utilized in construction projects ordered by public institutions to improve the level of occupational safety and health.
        4,000원
        18.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the importance of artificial intelligence grows rapidly and emerges as a leader in technology, it is becoming an important variable in the next-generation industrial system along with the robot industry. In this study, a safety system was developed using deep learning technology to provide worker safety in a robot workplace environment. The implemented safety system has multiple cameras installed with various viewing directions to avoid blind spots caused by interference. Workers in various scenario situations were detected, and appropriate robot response scenarios were implemented according to the worker's risk level through IO communication. For human detection, the YOLO algorithm, which is widely used in object detection, was used, and a separate robot class was added and learned to compensate for the problem of misrecognizing the robot as a human. The performance of the implemented system was evaluated by operator detection performance by applying various operator scenarios, and it was confirmed that the safety system operated stably.
        4,000원
        19.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study attempted to analyze the comparative advantage in terms of disaster safety costs in verifying the effectiveness and economic feasibility of the high-performance water-bulwark system in the pole tunnel, which was recently promoted as a part of the acceleration of vehicles. The tunnel to be analyzed was divided into a short tunnel(Anyang, Cheonggye) and a long tunnel(Suraksan, Sapaesan). As a result, it was analyzed that 25% of the improvement effect would occur if one lane was secured by applying the Water-Bulwark System. It was analyzed that this is because the time value cost, which accounts for a large proportion of the traffic congestion cost of short tunnels and pole tunnels, differs depending on the congestion time and traffic volume, not the length of the tunnel.
        4,000원
        20.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Severe Disaster Punishment Act had recently been established in order to promote safety and health (OSH) management system for severe accident prevention. OSH management system is primarily designed based on risk assessments; however, companies in industries have been experiencing difficulties in hazard identification and selecting proper measures for risk assessments and accident prevention. This study intended to introduce an accident analysis method based on epidemiological model in finding hazard and preventive measures. The accident analysis method employed in this study was proposed by the U.S. Department of Energy. To demonstrate the effectiveness of the accident analysis method, this study applied it to two accident cases occurred in construction and manufacturing industries. The application process and results of this study can be utilized in improving OSH management system and preventing severe accidents.
        4,000원
        1 2 3 4 5