검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2011.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of oxygen on the shape memory characteristics in Ti-18Nb-6Zr-XO (X = 0-1.5 at%) biomedical alloys was investigated by tensile tests. The alloys were fabricated by an arc melting method at Ar atmosphere. The ingots were cold-rolled to 0.45 mm with a reduction up to 95% in thickness. After severe cold-rolling, the plate was solution-treated at 1173 K for 1.8 ks. The fracture stress of the solution-treated specimens increased from 450 Mpa to 880 MPa with an increasing oxygen content up to 1.5%. The fracture stress increased by 287MPa with 1 at% increase of oxygen content. The critical stress for slip increased from 430 MPa to 695 MPa with an increasing oxygen content up to 1.5 at%. The maximum recovery strain of 4.1% was obtained in the Ti-18Nb-6Zr-0.5O (at%) alloy. The martensitic transformation temperature decreased by 140 K with a 1.0 at% increase in O content, which is lower than that of Ti-22Nb-(0-2.0)O (at%) by 20 K. This may have been caused by the effect of the addition of Zr. This study confirmed that addition of oxygen to the Ti-Nb-Zr alloy increases the critical stress for slip due to solid solution hardening without being detrimental to the maximum recovery strain.
        4,000원
        2.
        2006.09 구독 인증기관·개인회원 무료
        The composite used in this paper was prepared by hot-pressing ball-milled Mg alloy powders, in which NiTi shape memory alloy fibers in a row were sandwiched. The microstructure and property were examined. It is shown that the composite consisted of a homogenous matrix with uniformly distributed NiTi shape memory alloy fibers, recrystallization took place in the Mg alloy matrix which was subjected to plastic deformation an adequate bonding formed between the matrix and fibers; the density and tensile strength of the composite increased after the hot-forging; the hot-forging process is capable of improving properties of the composite.
        4.
        1999.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구는 냉간가공과 열처리를 통해 Cu-26.65Zn-4.05Al-0.31Ti(wt%) 형상기억합금의 결정립을 미세화하기 위한 목적으로 수행하였다. 냉간가공을 위하여는 α-상이 가능한 많이 존재하는 (α+β)-조직을 가져야 하는데, 이는 550℃에서 열처리함으로써 얻었고, 최종두께 1mm로 냉간압연하였다. 총 압연율은 70%와 90%이었다. 냉간압연한 판재를 800℃에서 가열 후 급랭함으로써 형상기억특성을 갖는 상으로 변태시켰으며, 이 대 결정립크기를 측정한 결과, 열간압연한 경우보다 냉간압연과 열처리를 한 경우의 결정립이 월등히 작아졌음을 보여주었다. 냉간압연과 열처리를 한 경우에는 냉간압연 변형율이 큰 경우가 결정립이 더 작아지는 경향을 보였다. 또한 결정립크기가 작아짐에 따라 변태온도가 저하되었으며 오스테나이트상이 더 안정하게 되었음을 확인할 수 있었다. In this study, cold-rolling and appropriate annealing was adopted for the grain refining of Cu-26.65Zn-4. 05Al-0.31Ti(wt%) shape memory alloy. For the cold deformation of this alloy the ducti1e α-phase must be contained. After heat treatment at 550℃ the (α+β)-dual phase with 40vol.% α-phase was obtained which could be rolled at room temperature. This alloy was cold rolled into a final thickness of 1.0mm with total reduction degrees of 70% and 90%. The rolled sheets were betanized at 800℃ for various times, then quenched into ice water. The grain size of co]d rolled samples were 60∼80 ㎛ which is much smaller comparing with the hot-rolled samples. And the 90% rolled sample showed smaller grain size than the case of the 70% rolled one. The small grain size had influence on the phase transformation temperatures and stabilization of the austenitic phases.
        4,000원