검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2023.11 구독 인증기관·개인회원 무료
        Tritium is radioactive isotope, emitting beta ray, released as tritiated water from nuclear power plants. Due to the danger of radioactive isotope, the appropriate separation of tritium is essentially carried out for environment and safety. Further, it is also promising material for energy production and research. The tritiated water can be treated by diverse techniques such as water distillation, cryogenic distillation, Girdler-sulfide process, and catalytic exchange. After treatment, it is more desirable to convert as gas phase for storage, comparing to liquid phase. However, achieving complete separation of hydrogen gases with very similar physical and chemical properties is significantly challenging. Thus, it is necessary to develop materials with effective separation properties in gas separation. In this presentation, we present hydrogen isotope separation in the gas phase using modified mesoporous silica. Mesoporous silica is a form of silica that is characterized by its mesoporous structure possessing pores that range from 2 to 50 nm in diameter. This material can be functionalized to selectively capture and separate molecules having specific size and affinity. Here, the silver and copper incorporated mesoporous silica was synthesized to tailor a chemical affinity quantum sieving effect, thereby providing separation efficiency in D2/H2. The adsorption quantities of H2 and D2 were determined by sorption study, and the textural properties of each mesoporous silica were analyzed using N2 physisorption. The selectivity (D2/H2) in diverse feed composition (1:1, 1:9, and 1:99 of D2/H2) was estimated by applying ideal adsorbed solution theory to predict the loading of the gas mixture on bare, Ag- and Cu-mesoporous silica based on their sorption study. Further, the performance of each mesoporous silica was evaluated in the breakthrough adsorption under 1:1 mixture of D2 and H2 at 77 K.
        3.
        2018.11 구독 인증기관·개인회원 무료
        Graphene oxide (GO), consisting of numerous oxygen functional groups and 2-D graphene sheet, has drawn intensive attention as a promising membrane material due to its molecular-sieving nanochannel and ease of scale up. However, GO membranes have generally showed a low gas permeability stemming from the high tortuosity of laminate structure. Herein, we prepared silica/GO hybrid membranes to overcome the low gas permeability of GO membrane by tuning its surface area and interlayer spacing. The size of silica nanoparticles grown on the GO nanosheets was successfully controlled by varying the concentration of silica precursor. In particular, the relationship between gas permeability of silica/GO hybrid membranes and the size of silica nanoparticles was investigated.
        4.
        2017.05 구독 인증기관·개인회원 무료
        세계적인 급속한 도시화, 산업의 발달 및 인구의 증가, 기후 온난화 등 물의 공급과 수요의 불균형이 초래되고 있다. 본 연구에서는 기계적 물성이 뛰어난 Poly(vinylidene fluoride) (PVDF)와 첨가제 Silica를 사용 하였다. 희석제로는 플라스틱 가공 공정에 많이 이용되는 dioctyl phthalate (DOP), dibutyl phthalate (DBP)를 사용하여 새로운 분리막 제조 방법인 TIPS(Thermally Induced Phase Seaparation) 방식을 이용하여 분리막의 기초 연구를 실시 하였다. 실험의 특성 평가로는 주사방출현미경(SEM), DSC 그리고 Hot stage 등으로 특성평가를 진행하여 TIPS 분리막의 제조 방식에 따른 소재의 변화를 관찰 하였다.
        5.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 수처리 분리막에 제조하기 위하여 열유도 상분리법(thermally induced phase separation, TIPS)을 이용 하였고, 기계적 물성과 내화학성이 우수한 폴리플루오르화비닐리덴(poly(vinylidene fluoride)(PVDF)) 고분자와 실리카를 이용 하여 특성평가를 진행하였다. 특성평가에 사용된 희석제는 dioctyl phthalate (DOP), dibutyl phthalate (DBP)를 사용하였으며, PVDF와 실리카의 비율에 따른 분리막 제조 조건을 알아보기 위하여 결정화 온도, 흐림점, SEM 이미지 등을 관찰하였다. 실 리카의 함량이 증가할수록 결정화 온도와 흐림점이 증가하였음을 확인하였고, 상평형도 작도를 통하여 분리막 제조 조건을 확인하였다.
        4,000원
        6.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PTMSP-silica-PEI 복합막이 PTMSP에 TEOS를 가하여 졸-겔 방법에 의해 제조되었다. 복합막의 특성은 1H-NMR, FT-IR, TGA, XPS, SEM, GPC 등을 사용하여 조사하였고, 복합막의 기체투과 특성을 알아보기 위해 H2,O2,N2,CO2,CH4를 사용하였다. PTMSP-silica-PEI 복합막의 기체 투과도는 TEOS의 함량이 증가함에 따라 증가하였다. H2와 CH4는 15 wt% TEOS에서 PTMSP-PEI 복합막보다 투과도와 선택도가 모두 증가하였다. 한편 O2와 CO2는 선택도의 감소없이 투과도가 증가하는 경향을 나타냈다.
        4,000원
        7.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PTMSP-PEI 복합막과 PTMSP-Silica-PEI 복합막을 제조하고, 막의 특성을 FT-IR, GPC, SEM 등을 사용하여 조사하였다. PTMSP-Silica-PEI 복합막은 silica의 함량이 23∼60 wt%로 증가하면서 입자의 크기는 점차 작아지고 입자의 분포는 균일하게 되었다. PTMSP-PEI 복합막과 PTMSP-Silica-PEI 복합막에 의한 H2/N2 혼합기체분리는 25{℃, ΔP 5 psi∼30 psi 범위에서 조사되었다. PTMSP-PEI 복합막과 PTMSP-Silica-PEI 복합막들의 수소에 대한 분리인자(α, β, (equation omitted)) 값은 투과셀의 압력이 증가할수록 그리고 silica의 함량이 증가할수록 증가하였다. 25{℃, ΔP 30 psi에서 PTMSP-PEI 복합막의 수소에 대한 α, β, (equation omitted) 값은 2.28, 1.58, 1.44이고 silica 60 wt%인 PTMSP-Silica-PEI 복합막의 수소에 대한 α, β, (equation omitted) 값은 3.34, 1.95, 1.72 이었다.
        4,000원
        8.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이번 연구에서 효율적인 기체분리를 위한 탄소-실리카(C-SiO2) 분리막이 방향족 이미드 블록과 실록산 블록으로 구성된 공중합체의 비활성분위기에서의 열분해를 통해 제조되었다. 이 탄소-실리카 기체분리막은 비교적 작은 크기의 기체분리, 즉 He/N2, O2/N2 그리고 Co2/N2의 분리에 있어 매우 뛰어난 기체선택도를 나타내었다. 두 상을 가진 공중합체의 열분해는 600도, 800도 그리고 1000도의 최종열분해온도로서 수행되었으며, 이러한 두 상으로 이루어진 전구체는 탄소막의 제조에 처음으로 보고되었다. 이러한 전구체는 두 상의 조성 및 같은 조성에서 중합방법의 차이에 의해 형성되는 모폴로지의 변화가 최종 탄소-실리카막의 기체분리특성에 미치는 영향을 살피기 위해 제조되었다. 이러한 탄소-실리카분리막은 2.6-3.6AA의 동력학적 반경을 가진 작은 기체분자(헬륨, 산소, 질소, 이산화탄소)들을 사용한 기체투과실험에서, 탄소-실리카 분리막은 높은 투과도와 함께 뛰어난 분자체 효과를 보였다. 게다가 탄소-실리카분리막의 기체분리특성은 사용한 고분자 전구체의 기체분리특성과 매우 유사하며, 이것은 열적으로 안정한 두상의 사용으로 전구체의 초기 모폴로지가 열처리 후에도 상당히 유지되었기 때문이다. 현재의 연구는 탄소막 전구체의 초기의 모폴로지가 최종 탄소막의 분리특성 및 미세구조에 결정적인 영향을 미침을 암시한다.
        4,500원
        10.
        2000.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        다공성 실리카 막을 졸겔법에 의해서 Si(OC2H5)4-H2O 로부터 제조하고, 막의 특성을 TG-DTA, XRD, IR, BET, SEN, TEM을 사용하여 조사하였다. 다공성 실리카 막 제조를 위한 Si(OC2H5)4 : H2O4 : H2O : C2H5OH의 최적 몰비는 1 : 4.5 : 4 이었다. 100℃~1100℃~에서 열처리된 막의 비표면적은 3.8 m2/g~902.3m2/g 이었으며, 기공크기는 20Å~50Å이었다. 300℃~~700℃~범위에서 열처리된 막의 입자크기는 15nm~30nm이며, 열처리 온도가 증가하면 입자의 크기도 증가하였다. 이렇게 제조한 다공성 실리카 막으로 H2/N2 혼합기체를 분리하는데 응용하였으며, 다공성 실리카 막에 의한 H2/N2혼합기체분리는 Knudsen flow와 surface flow에 의해서 일어나며 주로 surface flow에 의존하였다. 다공성 실리카 막의 H2/N2 혼합기체에 대한 real separation factor(alpha)는 155.15 cmHg(DeltaP)와 25℃에서 5.17이었으며, real separation factor(alpha), head separation factor (β), tail separation factorbarB)는 압력이 증가하면 증가하였다.
        4,200원
        11.
        2000.08 KCI 등재 서비스 종료(열람 제한)
        To improve CO2 permselectivity, a modified silica membrane was prepared by chemical vapor deposition with tetraethoxysilane(TEOS)-ethanol-water, and TEOS-ethanol-water-HCI solution at 300-600℃. The silica was effectively deposited in the mesopores of a γ-alumina film coated on a porous α-alumina tube by evacuating the reactants through the porous wall. In this membrane, CO2 interacts, to some extent, with the pore wall, and CO2/N2 selectivity then exceeds the value of the Knudsen diffusion mechanism, while the membrane derived from TEOS alone has no CO2 selectivity. The silica membrane prepared from TEOS-ethanol-water-HC1 solution showed that CO2 permeance was 2.5×10-7㏖/s-1. m-2. Pa-1 at 30℃ and CO2/N2 selectivity was approximately 3. The CO2 permeance and selectivity was improved by enlarging the surface diffusion with modification of chemical affinity of the silica pores.
        12.
        1999.04 KCI 등재 서비스 종료(열람 제한)
        For effective CO2 separation using pore size controlled membrane, silica was deposited in the mesopores of a γ-alumina film by chemical vapor deposition of tetraethoxysilane (TEOS) and phenyl-substituted ethoxysilanes at 773-873K. The membranes prepared with phenyl-substituted ethoxysilanes were calcined to remove the phenyl group and control the pore size. The gas permselectivity of prepared membranes was evaluated by using H2, CO2, N2, CH4 and C3H8 single component and a mixture of CO2 and N2. The membranes produced using TEOS contained micropores having permselectivity only to hydrogen, but the phenyl-substituted ethoxysilane derived membranes possessed micropores which are recognizable molecules of CO2, N2 and CH4. In the diphenyldiethoxysilane-derived membrane, the CO2 permeance and selectivity of CO2/CH4 were 10-6 ㎥(STP)·m-2·s-1·kPa-1 and 11, respectively. Therefore, the use of phenyl-substituted ethoxysilane was effective in controlling micropore size for CO2 separation.