검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        Removal of siloxane compounds is very important to protecting the biogas energy conversion system from decreased efficiency and parts damage. Among various siloxane removal technologies, adsorption towers are mostly used for performance and ease of operation. However, due to the difficulty of measuring the concentration of siloxane compounds in the gas stream and the complicated matrix of siloxane compounds, adsorption characteristics are not well known. In this study, the adsorption characteristics for multi siloxane components are experimentally studied. Four siloxane components are vaporized in the nitrogen stream supplied continuously to a lab-scale adsorption tank with commercially available silica gel or activated carbon and an FTIR (Fourier-transform infrared spectroscopy) analyzer was used for the online siloxane analysis to find out the adsorption characteristics. While a mixture of L2, L5, D4 and D5 adsorption capacity of silica gel and activated carbon are similar -11.13 and 11.56wt% respectively-adsorption characteristics of each adsorbent was well distinguished in terms of breakthrough behavior. Silica gel shows sequential breakthrough for each siloxane compound and a more noticeable unique time range for Rc > 1, while relatively simultaneous breakthrough was shown for activated carbon adsorbents.
        2.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        In this study, GC-MS linked with an automatic thermal desorber was used to quantitatively analyze the odorous and volatile compounds in the gas emitted from a sewage sludge drying facility. In addition, the removal characteristics of these compounds were investigated by using a pilot-scale packed bed wet scrubber. A quantitative analysis for 58 odorous and volatile compounds in the gas was successfully achieved with GC-MS and GC-FPD. The a quantitative analysis revealed the major odorous compounds were hydrogen sulfide and acetaldehyde. In addition, D-type siloxane compounds such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were quantitatively measured. The concentrations of siloxane compounds measured in the gas were in the range of 4.54- 7.36 ppmv, higher than those in landfill gas. The average removal efficiency of the odorous and volatile compounds in a wet scrubber was 67.37%. D4, D5, and D6, which are hydrophobic compounds, were also removed by as much as 50.68%, 44.56%, and 70.26%, respectively.