검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,636

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구를 통해 국내에 분포하는 중기문응애류 중 파리응애과의 Holostaspella crenulata Krantz, 1967 (톱니무늬파리응애, 신칭) 와 화살응애 과의 Lasioseius floridensis Berlese, 1916 (가슴선화살응애, 신칭) 를 처음으로 확인하고, 각 종에 대한 분류학적 진단과 분포정보, 성충의 현미경사 진과 도판을 제시하였다.
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전 세계적으로 급격하게 성장하는 스마트농업의 중요 요소 중 하나인 자동 관개시스템은 토양수분 센서에서 계측한 데이터를 기반으로 관개시점과 관개량을 판단하기 때문에 토양수분 센서의 설치가 필수적이다. 하지만 국내의 경우 토양을 고려하지 않고 단순히 포장의 가운데에 센서를 설치하는 등 토양수분 센서의 설치 위치에 대한 기준이 마련되어 있지 않아 토양수분 계측 위치에 관한 기준 검토가 필요하다. 본 연구에서 통계학적 방법을 이용하여 토양수분의 대표 계측지점을 선정 연구를 수행하였다. 토양은 수직적 또는 수평적으로 불균일성을 갖기에 구명이 쉽지 않다. 따라서 포장 전체에 걸쳐 지속해서 편향이 발생하지만 특정 위치에서의 평균 토양수분이 시간에 따라 유지한다는 시간 안정성 개념을 기반으로, 평균 토양수분을 나타내는 대표지점 선정 연구를 수행하였다. 토양수분을 측정하기 위한 시스템을 제작하였고, TDR (Time Domain Reflectometry) 센서를 이용하여 총 30개 지점을 측정하였다. 2023년 5월부터 8월까지 측정한 날짜·지점별 데이터를 이용하여, 지점의 편향을 정량화하여 식별할 수 있는 MRD (Mean Relative Difference, 평균상대차이)와 측정의 정밀도를 나타내는 RD (Relative Difference, 상대차이)의 SDRD (Standard Deviation of Relative Difference, 표준편차)를 산출하고, MRD와 SDRD를 통합한 지표로써 RMSE (Root Mean Square Error, 평균제곱근오차) 를 구하여, 시간 안정성이 가장 높은 지점인 RMSE의 수치가 최소인 지점을 대표지점으로 선정하였다. 토양수분 센서로 측정한 데이터를 사용하여 지점별 RMSE를 산출하고 비교하여, 평균적인 토양수분을 나타내는 대표지점을 선정할 수 있음을 확인하였다.
        4,000원
        3.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        신뢰성 있는 토양의 이산요소모델을 개발하기 위해서는 토양의 특성을 고려하여 매개변수를 교정해야 한다. 본 연구에서는 이산요소모델을 구성하는 각 매개변수가 토양 입자의 거동에 미치는 영향을 분석하였고, 분석된 결과를 이용하여 토양의 이산요소모델을 개발하였다. 민감도 분석의 대상이 되는 매개변수는 전단 계수, 마찰 계수, 표면 에너지 등으로 선정하였으며, 교정의 기준이 되는 토양의 특성은 가비중, 안식각, 점착력 및 내부마찰각으로 선정하였다. 또한, 토성이 서로 다른 해안가, 논 및 밭을 구성하는 토양을 대상으로 연구를 수행하여 다양한 토성에 대한 적용성을 확인하였다. 결과적으로 본 연구에서 수행한 민감도 분석 결과를 이용하여 각 토양의 거동을 모사할 수 있는 이산요소모델을 교정하였으며, 시험 결과와의 비교를 통해 교정된 이산요소모델을 검증하였다.
        4,500원
        4.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        토석 채취 후 식생복구지의 토양 특성은 복구 식생의 생육에 중요하다. 본 연구는 토석 채취 후 식생복구지와 인접 소나무 및 굴참나무 임분을 대상으로 0∼10cm, 10∼20cm, 20∼30cm 깊이에 토양의 물리·화학적 특성을 조사하였다. 토양용적밀도와 토양 pH는 식생복구지가 소나무나 굴참나무 임분에 비해 유의적으로 높았으나(P<0.05), 유기탄소와 전질소농도는 인접 산림지에 비해 낮았다. 유효 인은 0~10cm 깊이에서 식생복구지 와 산림지 간 유의적인 차이가 없었으나, 교환성 칼슘은 식생복구지가 인접 산림지에 비해 유의적으로 높게 나타났다. 토양 유기 탄소저장량은 식생복구지가 9,896 kg C ha-1로 소나무 임분 131,368 kg C ha-1나 굴참나무 임분 154,381 kg C ha-1에 비해 유의적으로 낮았으며 질소저장량도(식 생복구지: 2,406 kg N ha-1; 소나무: 10,496 kg N ha-1; 굴참나무: 8,081 kg N ha-1) 유사한 경향을 보였다. 그러나 인, 포타슘, 마그네슘 저장량은 식생복구지와 인접 산림 간 유의적인 차이는 없었다. 한편, 칼슘저장량은 식생복구지가 8,998 kg Ca ha-1로 소나무 임분 697 kg Ca ha-1나 굴참나무 임분 660 kg Ca ha-1에 비해 유의적으로 크게 나타났다. 본 연구 결과에 따르면 토석 채취 후 식생복구지는 토양용적밀도와 토양 pH를 낮추고 유기물의 증가와 질소 시비 같은 양분관리가 필요한 것으로 나타났다.
        4,000원
        5.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study performed the seismic response analysis of an LNG storage tank supported by a disconnected piled raft foundation (DPRF) with a load transfer platform (LTP). For this purpose, a precise analytical model with simultaneous consideration of Fluid-Structure Interaction (FSI) and Soil-Structure Interaction (SSI) was used. The effect of the LTP characteristics (thickness, stiffness) of the DPRF system on the seismic response of the superstructure (inner and outer tanks) and piles was analyzed. The analytical results were compared with the response of the piled raft foundation (PRF) system. The following conclusions can be drawn from the numerical results: (1) The DPRF system has a smaller bending moment and axial force at the head of the pile than the PRF system, even if the thickness and stiffness of the LTP change; (2) The DPRF system has a slight stiffness of the LTP and the superstructure member force can increase with increasing thickness. This is because as the stiffness of the LTP decreases and the thickness increases, the natural frequency of the LTP becomes closer to the natural frequency of the superstructure, which may affect the response of the superstructure. Therefore, when applying the DPRF system, it is recommended that the sensitivity analysis of the seismic response to the thickness and stiffness of the LTP must be performed.
        4,300원
        6.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        식물의 흡수를 통한 공기오염물질 제거는 생육 상태에 따라 그 효과가 달라진다. 실내에서 토양수분의 공급은 식물의 생 육을 위한 기본적인 관리 사항이다. 따라서 본 연구는 토양수 분함량에 따른 생리적 반응이 가스상 공기오염물질인 톨루엔 저감에 미치는 영향을 구명하고, 최적의 생육과 공기 정화 효 과를 위한 적정 토양수분함량을 찾고자 수행하였다. 이를 위 해 스파티필름과 파키라를 사용하여 40일 동안의 평균 토양 수분함량을 25%, 20%, 15%, 10%로 처리한 후 양자수율, 광 합성률, 기공전도도, 증산량 등 생리적 지수와 엽면적당 톨루 엔 저감량을 측정하였다. 그 결과 스파티필름은 토양수분함량 을 20~25%로 관리할 때 생육이 양호하고 최적의 톨루엔 저 감 효과를 얻을 수 있을 것으로 판단되며, 10% 이하 건조에 대한 주의가 요구된다. 반면 파키라는 토양수분함량 20% 이 하 처리구에서 톨루엔 저감량이 증가하였으나 10% 처리구에 서 생장량이 저하될 가능성이 있으므로, 공기 정화와 생육을 위한 최적 토양수분함량은 15~20% 범위이며, 25% 이상으로 장기간 유지하는 것은 과습을 유발할 가능성이 있는 것으로 판단된다.
        4,000원
        7.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study conducted an investigation into the effects of fruit type and cultivation practices (organic and conventional) on soil characteristics and soil arthropod communities within apple, blueberry, grape, peach, and pear orchards. The collection of soil arthropod communities was achieved through the utilization of pitfall traps, with concurrent measurements taken for soil moisture content, electrical conductivity, and temperature. The findings of this study unveiled substantial impacts attributed to fruit type and cultivation practices on soil characteristics. Specifically, within organic apple orchards, discernibly higher levels of soil moisture content, electrical conductivity, and temperature were observed when compared to their conventional counterparts. The investigation into soil arthropod communities yielded a total of 1,527 individuals, classified in to five phyla and 15 orders. The range of abundance, species richness, and diversity indices varied across conventional and organic orchards. Cultivation practices were found not to exert a significant influence on soil arthropod community characteristics. However, Non-metric Multidimensional Scaling (NMDS) analysis indicated a significant differentiation in soil arthropod community structure based on cultivation practices. This study underscores the importance of considering vegetation structure and environmental characteristics that may influence soil arthropod communities comprehensively when assessing the impact of cultivation practices on soil arthropods. Furthermore, it emphasizes the need to account for both the characteristics and structure of soil arthropod communities in understanding the implications of cultivation practices on these organisms.
        4,000원
        8.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study measured soil respiration in pine forests dominated by Pinus densiflora in Mt. Jeombong, Mt. Namsan, Mt. Jirisan in Republic of Korea from 2009 to 2010. The seasonal variations, along with temperature and soil moisture content, were measured to understand the characteristics at each site. Soil respiration was highest in summer and autumn, closely influenced by the increase in soil temperature. Throughout the measurement period, soil respiration ranged from 205.6 to 312.2 mg CO2 m-2 h-1, with Mt. Namsan showing the highest values and Mt. Jirisan the lowest. A strong correlation was observed between soil respiration and soil temperature, with Q10 values ranging from 2.5 to 3.0. Precipitation significantly affected soil moisture content, and although it appeared to influence soil respiration, no significant correlation was found.
        4,000원
        9.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mangroves are distributed in intertidal zones of coastal environments or estuarine margins, playing a critical role in the global carbon cycle. However, understanding of the carbon cycle role of mangrove associates in the Republic of Korea is still limited. This research measured soil respiration and leaf gas exchange in three habitats of Hibiscus hamabo (Gimnyeong, Seongsan, and Wimi) and analyzed the impacts on sites and months. Soil respiration was measured once a month from June to October 2022 and leaf gas exchange was measured monthly from June to September 2022. Soil respiration in August (5.7±0.8 μmol CO2 m-2 s-1) was significantly higher than that in other months (p<0.001) and soil respiration increased as air temperature increased (p<0.001). In Seongsan, net photosynthesis in July (9.0±0.9 μmol m-2 s-1) was significantly higher than that in other months (p<0.001). Net photosynthesis increased as stomatal conductance and transpiration rate increased during the entire period (p<0.001). Furthermore, a weak positive linear relationship was observed between soil respiration and net photosynthesis (r2=0.12; p<0.01). The results indicated that soil respiration was influenced not only by air temperature and season but also by net photosynthesis. This study is expected to provide basic information on the carbon dynamics of mangrove associates.
        4,000원
        10.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate the impact of forestry projects on the carbon stocks of forests, we estimated the carbon stock change of above-ground and soil before and after forestry projects using forest type maps, forestry project information, and soil information. First, we selected six map sheet with large areas and declining age class based on forest type map information. Then, we collected data such as forest type maps, growth coefficients, soil organic matter content, and soil bulk density of the estimated areas to calculate forest carbon storage. As a result, forest carbon stocks decreased by about 34.1~70.0% after forestry projects at all sites. In addition, compared to reference studies, domestic forest soils store less carbon than the above-ground, so it is judged that domestic forest soils have great potential to store more carbon and strategies to increase carbon storage are needed. It was estimated that the amount of carbon stored before forestry projects is about 1.5 times more than after forestry projects. The study estimated that it takes about 27 years for forests to recover to their pre-thinning carbon stocks following forestry projects. Since it takes a long time for forests to recover to their original carbon stocks once their carbon stocks are reduced by physical damage, it is necessary to plan to preserve them as much as possible, especially for highly conservative forests, so that they can maintain their carbon storage function.
        4,000원
        11.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To understand microorganism effects on wild mushroom fruiting bodies, we investigated the fungi in hyphosphere soil supporting wild mushroom species Cortinarius violaceus, Amanita hemibapha, Laccaria vinacelavellanea, and Amanita verna found in the Gotjawal area of Jeju Island. Fungal species identification based on morphological traits and molecular analysis of ITS, LSU rDNA, and -tubulin gene sequences resulted in isolation and identification of eleven fungal species previously unrecorded in Korea. These newly-recorded species are: Arthrinium kogelbergensis, Kalmusia longisporum, Keithomyces carneum, Neopyrenochaeta cercidis, Penicillium ranomafanaense, Phomatodes nebulosa, Pyrenochaeta nobilis, Tolypocladium album, Talaromyces kendrickii, Talaromyces qii, and Umbelopsis gibberispora, and their morphological characteristics and phylogenetic positions are described.
        4,500원
        12.
        2023.11 구독 인증기관·개인회원 무료
        When decommissioning a nuclear power plant, it is expected that clearance or radioactive waste (e.g., soil, concrete, metal, etc.) below the low-level will be generated in a short period on a large scale. Among the various types of waste, most of the contaminated soil is known to be classified as clearance or the (very) low-level radioactive waste. Accordingly, an accurate measurement and classification of contaminated soil in real-time during the decommissioning process can efficiently reduce the amount of soil waste and the possibility of contamination diffusion. However, in order to apply a system that measures and classifies contaminated soil in real-time according to the level of contamination to the decommissioning site, a demonstration is required to evaluate whether the system is applicable to the site. In this study, to establish requirements for determining the applicability of the system to the decommissioning site, preceding cases from countries with abundant decommissioning experience were investigated. For example, MACTEC of the U.S. demonstrated the developed system at the Saxton nuclear power plant in the U.S. and confirmed that the amount of soil that can be analyzed per hour in the system is affected by radionuclides, minimum detectable activity (MDA), and applicable volume. In the future, therefore, we will utilize the result of this study to develop the requirements of demonstrating the system for measurement and classification of contaminated soil in real-time.
        13.
        2023.11 구독 인증기관·개인회원 무료
        Recently, BNS (Best System) developed a system for evaluation and classification of soil and concrete wastes generated from nuclear power plant decommissioning. It is composed of various modules for container loading, weight measurement, contamination evaluation, waste classification, stacking, storage and control. The contamination evaluation module of the system has two sub modules. One is for quick measurement with NaI (Tl) detector and the other is for accurate measurement with HPGe detector. The container used at the system for wastes handling has capacity of 100 kg and made of stainless steel. According to the measurement result of Co-60 and Cs-137, the waste is classified as waste for disposal or waste for clearance. Performance of the system was demonstrated using RM (Reference Material) radiation source. This year, necessity of system improvement was suggested due to revised operation requirements. So, the system should show throughput of more than 1 ton/hr and Minimum Detectable Activity (MDA) of less than 0.01 Bq/g (1/10 of criteria for regulatory clearance) for Co-60 and Cs-137. And soil waste become main target of the system. For this, the container used for soil waste handling should have capacity of 200 kg. As a result, material for the container need to be changed from stainless steel to plastic or FRP (Fiber Reinforced Plastics). And large area detector should be introduced to the system to enhance processing speed of the system. Additionally, container storage rack and conveyor system should be modified to handle 200 kg capacity container. Finally, moving path of the container will be redesigned for enhanced throughput of the system. In this paper, concept development of the system was suggested and based on that, system development will be followed.
        14.
        2023.11 구독 인증기관·개인회원 무료
        For the release of the nuclear power plant site after the decommissioning, a reliable exposure dose assessment considering the environmental impact of residual radionuclides is essentially required. In this study, the Derived Concentration Guideline Level (DCGL) for the hypothetically contaminated surface soil at the Wolsong nuclear power plant (NPP) unit 1 site was preliminarily calculated by using the RESRAD-OFFSITE computational code and compared with the other case studies. Moreover, radiation exposure dose for local residents and relevant exposure pathways were quantitatively analyzed based on the calculation model established through this work. For the target site modeling, the source term was determined by referring to the previous case studies regarding the nuclear power plant decommissioning, quantification analysis data of pressure tubes of Wolsong NPP unit 1, and radionuclide data estimated by using the MCNP/ORIGEN-2 code. In total, 14 different radioisotopes such as Ag-108m, C-14, Co-60, Cs-134/137, Fe-55, H-3, Nb-93m/94, Ni-63, Sb-125, Sn-121m, Sr-90, and Zr-93 were considered as target radionuclides. In addition, the geological structure model of the Wolsong NPP site was established based on the final safety analysis report of Wolsong NPP unit 1. The distribution coefficients (Kd) were taken from the JAEA-SDB to estimate the migration/retardation behavior of various radionuclides under the groundwater condition of the Wolsong NPP site. In the present work, the DCGL values were calculated according to the site release criterion of 0.1 mSv/yr, which indicates the radiation protection standard for the site release. Moreover, the exposure pathway and sensitivity analyses were conducted to assess the sensitive input parameters remarkably influencing the calculation result. For the evaluation of exposure dose for local residents, a site layout centered around Wolsong NPP unit 4, located in the closest proximity to the residents’ habitation area, was alternatively established and all potential exposure pathways were considered as a comprehensive resident farmer scenario. The results obtained from this study are expected to serve as a preliminary case study for the DCGL values regarding the surface soil at the Wolsong NPP unit 1 site and for evaluating the radiation exposure dose to local residents resulting from the residual radioactivity at the site after the decommissioning.
        15.
        2023.11 구독 인증기관·개인회원 무료
        Economical radioactive soil treatment technology is essential to safely and efficiently treat of high-concentration radioactive areas and contaminated sites during operation of nuclear power plants at home and abroad. This study is to determine the performance of BERAD (Beautiful Environmental construction’s RAdioactive soil Decontamination system) before applying magnetic nanoparticles and adsorbents developed by the KAERI (Korea Atomic Energy Research Institute) which will be used in the national funded project to a large-capacity radioactive soil decontamination system. BERAD uses Soil Washing Process by US EPA (402-R-007-004 (2007)) and can decontaminate 0.5 tons of radioactive soil per hour through water washing and/or chemical washing with particle size separation. When contaminated soil is input to BERAD, the soil is selected and washed, and after going through a rinse stage and particle size separation stage, it discharges decontaminated soil separated by sludge of less than 0.075 mm. In this experiment, the concentrations of four general isotopes (A, B, C, and D which are important radioisotopes when soil is contaminated by them.) were analyzed by using ICP-MS to compare before and after decontamination by BERAD. Since BERAD is the commercial-scale pilot system that decontaminates relatively large amount of soil, so it is difficult to test using radioactive isotopes. So important general elements such as A, B, C, and D in soil were analyzed. In the study, BERAD decontaminated soil by using water washing. And the particle size of soil was divided into a total of six particle size sections with five sieves: 4 mm, 2 mm, 0.850 mm, 0.212 mm, and 0.075 mm. Concentrations of A, B, C, and D in the soil particles larger than 4 mm are almost the lowest regardless of before and after decontamination by BERAD. For soil particles less than 4 mm, the concentrations of C and D decreased constantly after BERAD decontamination. On the other hand, the decontamination efficiency of A and B decreased as the soil particle became smaller, but the concentrations of A and B increased for the soil particle below 0.075 mm. As a result, decontamination efficiency of one cycle using BERAD for all nuclides in soil particles between 4 mm and 0.075 mm is about 45% to 65 %.
        16.
        2023.11 구독 인증기관·개인회원 무료
        In the decommissioning site of Korean Research Reactor 1&2 (KRR-1&2), according to Low and Intermediate-level Radioactive Waste Disposal Acceptance Criteria of the Korea Radioactive Waste Agency (WAC-SIL-2022-1), characteristics of radioactive waste was conducted on approximately 550 drums of concrete and soil waste for a year starting from 2021. Among them, 50 drums of concrete waste transported and disposed to Gyeongju LILW disposal facility at the end of 2022. For the remaining approximately 500 drums of concrete and soil waste stored on-site, they were reclassified into two categories: permanent disposal grade and clearance grade. This classification was based on calculating the sum of fractions (SOF) per drum for each radionuclides. The plan is to dispose of around 200 drums in the permanent disposal grade and about 300 drums in the clearance grade by the end of 2023. Since concrete and soil decommissioning wastes are generated in large quantities over a short period with similar origins, they were grouped within five drums as suggested by the acceptance criteria. Mixed samples were collected from each group and used for radionuclide analysis. When utilizing mixed samples, three distinct samples are collected and analyzed for each group. The maximum value among these three radionuclide analysis results is then uniformly applied as the radionuclide concentration value for all drums within that group. Radioactive nuclides contained in similar types of radioactive waste with similar origins can be expected to have some statistical distribution. However, There has been no verification as to whether the maximum value among the three mixed samples exists within the statistical distribution or if it deviates from this distribution to represent a different value. In this study, we confirmed characteristics of radionuclide concentration distribution by examining and comparing radionuclide concentration distributions for radioactive wastes drum grouped for nuclear characteristic among 50 concrete wastes drum disposed in year 2022 and 500 concretes & soils drum scheduled for disposal (clearance or permanent disposal) in year 2023. In particular, when comparing tritium to other nuclides, it was observed that the standard deviation for the distribution of maximum values was approximately 318 times larger.
        17.
        2023.11 구독 인증기관·개인회원 무료
        The primary objective of this study is to evaluate a systematic design’s effectivity in remediating actual uranium-contaminated soil. The emphasis was placed on practical and engineering aspects, particularly in assessing the capabilities of a zero liquid discharge system in treating wastewater derived from soil washing. The research method involved a purification procedure for both the uranium-contaminated soil and its accompanying wastewater. Notably, the experimental outcomes demonstrated successful uranium separation from the contaminated soil. The treated soil could be self-disposed of, as its uranium concentration fell below 1.0 Bq·g−1, a level endorsed by the International Atomic Energy Agency for radionuclide clearance. The zero liquid discharge system’s significance lay in its distillation process, which not only facilitated the reuse of water from the separated filtrate but also allowed for the self-disposal of high-purity Na2SO4 within the residues of the distilled filtrate. Through a comparative economic analysis involving direct disposal and the application of a remediation process for uranium-contaminated soil, the comprehensive zero liquid discharge system emerged as a practical and viable choice. The successful demonstration of the design and practicality of the proposed zero liquid discharge system for treating wastewater originating from real uranium-contaminated soil is poised to have a lasting impact.
        18.
        2023.11 구독 인증기관·개인회원 무료
        In the case of dry storage facilities, slipping of the cask or tip-over are dangerous phenomena. For this reason, in dry storage facilities, measures against slipping and tip-over or related safety evaluations are important. Accidental conditions that can cause cask slippage and tip-over in dry storage facilities include natural phenomena such as floods, tornadoes, tsunamis, typhoons, earthquakes, and artificial phenomena such as airplane crashes. However, among natural phenomena, earthquakes are the most important natural phenomenon that causes tip-over. Also, many people had the stereotype that Korea is an earthquake-safe zone before 2016. However, earthquakes become a major disaster in Korea due to the 2016 Gyeongju earthquake and the 2017 Pohang earthquake, followed by the Goesan earthquake in October 2022. In this paper, seismic analysis was performed based on dry storage facilities including multiple casks. Design variables for the construction of an analysis model for dry storage facilities were investigated, and seismic analysis was performed. To evaluate tip-over accident during earthquake, seismic load was used from 0.2 g PGA to 0.8 g PGA and these earthquakes were followed Design Response Spectrum (DRS) in RG 1.60. The friction coefficient of concrete pad was used from 0.2 to 1.0. As a result of the analysis, tip-over accident could not find in the analysis from 0.2 g to 0.6 g. However, tip-over was appeared at friction coefficients of 0.8 and 1.0 at 0.8 g PGA. Tip-over angular velocity of cask was derived by seismic analysis and was compared with formula and tip-over analysis results. As a result, a generalized dry storage facility analysis model was proposed, and dry storage facility safety evaluation was conducted through seismic analysis. Also, tip-over angular velocity was derived using seismic analysis for tip-over analysis.
        19.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Non-structural elements, such as equipment, are typically affixed to a building’s floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building’s structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.
        4,200원
        20.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzes the seismic response of traffic light poles, considering soil-foundation effects through nonlinear static and time history analyses. Two poles are investigated, uni-directional and bi-directional, each with 9 m mast arms. Finite element models incorporate the poles, soil, and concrete foundations for analysis. Results show that the initial stiffness of the traffic light poles decreases by approximately 38% due to soil effects, and the drift ratio at which their nonlinear behavior occurs is 77% of scenarios without considering soil effects. The maximum acceleration response increases by about 82% for uni-directional poles and 73% for bi-directional poles, while displacement response increases by approximately 10% for uni-directional and 16% for bi-directional poles when considering soil-foundation effects. Additionally, increasing ground motion intensity reduces soil restraints, making significant rotational displacement the dominant response mechanism over flexural displacement for the traffic light poles. These findings underscore the importance of considering soil-foundation interactions in analyzing the seismic behavior of traffic light poles and provide valuable insights to enhance their seismic resilience and safety.
        4,000원
        1 2 3 4 5