검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        사용후 핵연료내 우라늄 및 초우란원소를 회수하는 파이로프로세싱 공정에서 배출되는 금속염화물계 방사성 폐기물은 높은 휘발특성과 붕규산계 유리와의 낮은 상용성으로 인해 고화처리가 쉽지 않은 폐기 물이다. 이를 위해, 본 연구에서는 고화처리의 한 방법으로 탈염화 반응을 통한 고화체제조 개념을 채택 하였다. 솔젤법을 이용하여 탈염화물질, SiO2-Al2O3-P2O5 (SAP)을 합성하였으며 이를 이용하여 탈염화 반 응거동 반응생성물의 고형화 특성을 조사하였다. LiCl계 폐기물과 달리, LiCl-KCl폐기물의 반응은 두 개 의 온도범위에서 반응이 진행되며, 400℃의 경우에는 LiCl이, 약 700℃에서는 KCl이 주로 반응하는 것으 로 확인되었다. 여러 가지 반응실험을 통하여 LiCl-KCl의 탈염화 반응에 가장 적합한 물질은 SAP 1071 (Si/Al/P=1/0.75/1 in molar)인 것으로 확인되었다. 4가지 종류의 고형화 실험을 통하여 고화체의 bulk shape과 densification은 SAP/Salt의 비에 영향 받는 것을 확인하였다. 제조된 고형화 시료는 Product Consistency Test-A법을 이용하여 기본적인 내구성을 평가하였다. 본 연구는 SiO2, Al2O3, P2O5 로 이루 어진 탈염화 물질을 이용하여 반응특성과 고형화 특성에 대한 기본적인 정보를 제공하였으며, 이와 같은 실험을 통하여, 본 연구에서 제안된 탈염화 고화처리방법이 휘발특성이 높고 기존 유리매질과 상용성이 낮은 금속염화물계 폐기물에 적용이 가능함을 확인하였다.
        4,000원
        2.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        금속염화물계 방사성 폐기물은 전해공정으로 이루어진 파이로프로세싱공정의 주요한 방사성 폐기물이 다. 이와 같은 폐기물은 탄산염이나 질산염과 달리 고온에서 분해되지 않고 바로 휘발되며, 기존의 규산 계 유리와 상용성이 낮아 처리가 쉽지 않다. 본 연구팀은 금속염화물계 폐기물을 고화처리하는 방법으로 탈염화처리법을 채택하였다. 본 연구에서는 그 후속적인 연구로서, 탈염화물질로 제안된 SAP (SiO2- Al2O3-P2O5)의 조성을 변화시켜 LiCl-KCl과의 반응성을 향상시키고 고화공정을 단순화시키고자 하였다. 기본물질계에 Fe2O3를 첨가할 경우 무게반응비 SAP/Salt를 3에서 2.25로 낮출수 있으며, Fe가 Al을 치환 하는 몰분율이 0.1이상이 될 경우에는 오히려 반응성이 점진적으로 감소하는 것으로 확인되었다. 또한 M-SAP에 B2O3를 첨가할 경우에는 유리매질을 사용하지 않고 monolithic form을 제조할 수 있었다. 침출 시험결과 U-SAP 1071이 가장 높은 내구성을 보여주었으며, 1 g의 금속폐기물을 처리시 약 3∼4 g의 고 화체가 발생되며, 이는 기존의 고화처리법보다 약 ⅓∼¼배정도 최종처분부피가 감소되는 효과를 얻을 수 있다. 이상의 실험결과로부터, 기존의 유리고화공정으로 처리가 어려운 휘발성 금속염화물계 폐기물 을 단 하나의 물질을 이용하여 처리할 수 있음을 확인하였으며, 이러한 처리방법은 고화처리시 발생되는 부피를 최소화활 수 있는 대안적인 고화처리방법이 될 것으로 판단된다.
        4,000원
        3.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/ stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.
        4.
        2017.05 서비스 종료(열람 제한)
        하수처리장의 증가와 함께 하수슬러지의 발생량 또한 매년 상승하고 있으며, 2025년은 2006년 대비 2배가 더 발생하게 된다. 이러한 하수슬러지는 주로 해양투기와 재활용에 의하여 처리되어 왔으나, 가장 단순하고 저렴한 방식이었던 해양투기가 2012년 01월부터 전면금지가 되었다. 현재 하수슬러지의 처리방법 중 재활용은 약 56% 정도를 차지하고 있다. 이 중 재활용은 매립지의 복토재, 건설자재, 토목자재, 시멘트 원료화 등으로 활용되고 있다. 지금까지 재활용 처리방법 중 매립지의 복토재로 재활용하는 것이 많은 연구가 진행되어 왔으나 친환경적인 처리방법 및 MICP 미생물에 관한 고형화/안정화 연구는 아직 미흡하다고 판단된다. 따라서, 본 연구에서는 MICP를 형성하는 미생물을 이용하여 하수슬러지를 고형화/안정화 한 후 매립지의 복토재로서 가능성을 보고자 한다. 이에 본 연구는 MICP를 형성하는 미생물의 생물학적 및 광물학적 분석을 하였으며 하수슬러지 및 고화제의 물리화학적 분석을 수행하였다. 본 연구를 위하여 하수슬러지의 고형화적 품질기준인 pH, 수분함량, 투수계수, 일축압축 강도, 유해물질 함량 분석을 실시하였다. 또한, MICP를 형성하는 미생물에 의하여 하수슬러지가 고화처리 된 것인지 확인하기 위하여 탄산칼슘의 광물학적 분석을 병행하여 고형화/안정화에 대한 신뢰성을 갖고자 한다.
        5.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to suggest feasible disposal methods for heavy-metal-contaminated soil or mine tailings through solidification/stabilization. To improve the compressive strength and enhance the heavy-metal stabilization after solidification/stabilization, we used the industrial wastes (oyster shell powder and waste gypsum) and indigenous bacteria as immobilization agents. Three indigenous bacteria were isolated from each heavy-metal-contaminated soil or mine tailing site, and the bacteria were identified by cellular fatty acid composition analysis. The results of cellular fatty acid composition analysis showed that the closest strains of these bacteria are Brevibacillus centrosporus, Lysinibacillus sphaericus, and Bacillus megaterium. To the best of our knowledge, this research was the first report of biomineralization by Brevibacillus centrosporus. As a result of mixing additives with the optimum mixing ratio suggested in this study, the compressive strengths of specimens were satisfied in accordance with the US Environmental Protection Agency (EPA) waste treatment standard after 28 days of aging. Additionally, the results of the Toxicity Characteristics Leaching Procedure (TCLP) and Synthetic Precipitation Leaching Procedure (SPLP) analysis showed the successful immobilization of heavy metals after 28 days of specimen formation for solidification/stabilization.