검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.11 구독 인증기관·개인회원 무료
        Due to the saturation of spent fuel pool of nuclear power plant in Korea, temporary storage for spent fuel will be installed, and spent fuel will be stored and managed in dry cask for a considerable period of time. Since spent nuclear fuel must withstand continuous decay heat, radiation and high internal pressure of the fuel rod in the cask, behavior of spent nuclear fuel is needed to be reviewed. Spent nuclear fuel used in Pressurized Water Reactor (PWR) in Korea is stored in a wet storage currently, but it is going to store a temporary dry-storage facility on Kori site. Therefore, it is very important and meaningful to evaluate the behavior of nuclear fuel with realistic modeling. Also, domestic PWR nuclear fuel has various burn-up. In the past, the burn-up of nuclear fuel in light water reactors was low, but in order to increase power generation efficiency, the concentration of uranium was increased and the number of new fuel was increased. Therefore, a large amount of nuclear fuel with burn-up of 45,000 MWD/MTU or higher, generally called high burn-up, is also stored in the spent fuel pool (SFP). Therefore, it is necessary to evaluate by dividing three different burn-up such as, low, medium, and high burn-up. Thus, this study will review the behavior of nuclear fuel at different burn-up during the temporary storage period with FALCON (EPRI), computational code and analyze the factors affecting the integrity of nuclear fuel, including when the temporary storage is extended its additional lifetime. And this evaluation will contribute developing the spent fuel management plan in Korea.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Most of the spent nuclear fuel generated by domestic nuclear power plants (NPPs) is temporarily stored in wet storage which is spent fuel pool (SFP) at each site. Currently, in case of Kori Unit 2, about 93.6% of spent nuclear fuel is stored in SFP. Without clear disposal policy determined for spent nuclear fuel, the storage capacity in each nuclear power plant is expected to reach saturation within 2030. Currently, the SFP stores not only spent fuel but also various non-fuel assembly (NFA). NFA apply to all device and structures except for fuel rods inserted in nuclear fuel assembly. The representative NFA is control element driving mechanism (CEDM), in-core instrument (ICI), burnable poison, and neutral resources. Although these components are irradiated in the reactor, they do not emit high-temperature heat and high radiation like nuclear fuel, so if they are classified as intermediate level waste (ILW) and low level waste (LLW) and moved outside the SFP, positive effects such as securing spent fuel storage space and delaying saturation points can be obtained. Therefore, this study analyzes the status of spent fuel and Non Fuel Assembly (NFA) storage in SFP of domestic nuclear power plants. In addition, this study predict the amount of spent fuel and NFA that occur in the future. For example, this study predicts the percentage of current and future ICIs and control rods in the SFP when stored in the spent fuel storage rack. In addition, the positive effects of moving NFA outside the SFP is analyzed. In addition, NFA withdrawn from SFP is classified as ILW & LLW according to the classification criteria, and the treatment, storage, and disposal methods of NFA will be considered. The study on the treatment, storage, and disposal methods of NFA is planned to be conducted by applying the existing KN-12 & KN-18 containers and ILW & LLW containers being developed for decommissioning waste.
        3.
        2023.05 구독 인증기관·개인회원 무료
        The current storage capacity of the spent nuclear fuel at the Kori unit 2 has reached approximately 94% saturation, excluding emergency core capacity. As South Korea has not yet constructed any interim storage facilities to store spent nuclear fuel, one of possible options is to install high density storage racks in spent fuel pool at the reactor site to increase its capacity. The high density storage rack is a technology developed to allow the storage to have more spent nuclear fuel than originally planned, while still ensuring safety. It achieves this by reducing the storage gap between the spent nuclear fuel. The purpose of this study is to investigate an appropriate storage capacity for spent fuel pool in the Kori unit 2 and the factors to be considered during the high density storage rack installation. Given that the Kori unit 2 is planning continued operation and Korea Hydro & Nuclear Power (KHNP) is preparing to install a temporary storage facility for spent nuclear fuel at the Kori nuclear site, it is reasonable to consider the installation of high density storage racks in the spent fuel pool as a storage solution for these issues. When evaluating the capacity of the spent fuel pool, the amount of spent nuclear fuel generated by other reactors in Kori nuclear site and the amount of spent nuclear fuel generated by continued operation of the Kori unit 2 should be taken into account. This study aims to consider these factors and evaluate the capacity of the spent fuel pool. Furthermore, when installing high density storage rack for the spent nuclear fuel, it should be noted that the existing storage racks at the Kori unit 2 are welded to the liner plate, which may require additional cutting work. Therefore, it is necessary to review the suitable method for the cutting work. Additionally, assuming that divers need to access the area near the storage racks or cutting & welding devices require radiation protection in the area, it is essential to analyze the expected radiation level with computational code and propose appropriate measures to limit work time or establish a work zone. Thus, this study evaluates appropriate capacity of spent fuel pool and work methods for the installation of high density storage rack in the spent fuel pool at the Kori unit 2. It is expected that this paper contributes to install high density storage racks in SFP safely.