검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 37

        1.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to ensure the structural integrity of a canister to be used in a dry storage system currently being developed in Korea. Based on burnup and cooling periods, the canister is designed with 24 bundles of spent nuclear fuel stored inside it. It is a cylindrical structure with a height of 4,890 mm, an internal diameter of 1,708 mm, and an inner length of 4,590 mm. The canister lid is fixed with multiple seals and welds to maintain its confinement boundary to prevent the leakage of radioactive waste. The canister is evaluated under different loads that may be generated under normal, off-normal, and accident conditions, and combinations of these loads are compared against the allowable stress thresholds to assess its structural integrity in accordance with NUREG-2215. The evaluation result shows that the stress intensities applied on the canister under normal, off-normal, and accident conditions are below the allowable stress thresholds, thus confirming its structural integrity.
        4,300원
        2.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A transfer cask serves as the container for transporting and handling canisters loaded with spent nuclear fuels from light water reactors. This study focuses on a cylindrical transfer cask, standing at 5,300 mm with an external diameter of 2,170 mm, featuring impact limiters on the top and bottom sides. The base of the cask body has an openable/closable lid for loading canisters with storage modules. The transfer cask houses a canister containing spent nuclear fuels from lightweight reactors, serving as the confinement boundary while the cask itself lacks the confinement structure. The objective of this study was to conduct a structural analysis evaluation of the transfer cask, currently under development in Korea, ensuring its safety. This evaluation encompasses analyses of loads under normal, off-normal, and accident conditions, adhering to NUREG-2215. Structural integrity was assessed by comparing combined results for each load against stress limits. The results confirm that the transfer cask meets stress limits across normal, off-normal, and accident conditions, establishing its structural safety.
        4,600원
        3.
        2023.11 구독 인증기관·개인회원 무료
        The operation time of a disposal repository is generally more than one hundred years except for the institutional control phase. The structural integrity of a repository can be regarded as one of the most important research issues from the perspective of a long-term performance assessment, which is closely related to the public acceptance with regard to the nuclear safety. The objective of this study is to suggest the methodology for quantitative evaluation of structural integrity in a nuclear waste repository based on the adaptive artificial intelligence (AI), fractal theory, and acoustic emission (AE) monitoring. Here, adaptive AI means that the advanced AI model trained additionally based on the expert’s decision, engineering & field scale tests, numerical studies etc. in addition to the lab. test. In the process of a methodology development, AE source location, wave attenuation, the maximum AE energy and crack type classification were subsequently studied from the various lab. tests and Mazars damage model. The developed methodology for structural integrity was also applied to engineering scale concrete block (1.3 m × 1.3 m × 1.3 m) by artificial crack generation using a plate jacking method (up to 30 MPa) in KURT (KAERI Underground Research Tunnel). The concrete recipe used in engineering scale test was same as that of Gyeongju low & intermediate level waste repository. From this study, the reliability for AE crack source location, crack type classification, and damage assessment increased and all the processes for the technology development were verified from the Korea Testing Laboratory (KTL) in 2022.
        4.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes a method to evaluate the structural safety of a large wide-width greenhouse structure against wind load caused by a typhoon through a fluid structure interaction analysis technique. The conventional method consisted of roughly estimating the wind load based on the relevant laws and regulations, and determining safety through structural analysis. However, since the wind load changes nonlinearly according to the wind speed distribution and wind direction around the greenhouse and the external shape of the structure, there are many uncertainties in the existing structural safety evaluation method, and it is difficult to accurately determine the design margin. In this study, a systematic method was developed to accurately calculate the wind load acting on a greenhouse structure and evaluate structural safety by considering the characteristics of wind through a fluid structure interaction analysis using coupled computational fluid dynamics and computational structural mechanics. Using the proposed method, it is possible to significantly reduce the manufacturing cost because it is possible to obtain an optimal design that reduces the over-conservative design margin while securing the structural strength of the greenhouse.
        4,000원
        5.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the automobile manufacturing industry, lightweight design is one of the essential challenges to be solved fundamentally. The vehicle wheels are classified as safety related components as the main substructure of the vehicle. In this study, we illustrate a technique for selecting the appropriate number of spokes. Based on the basic model of the selected number of spokes, we propose a method to maintain stiffness and design lightweight using topology optimization software. Based on the basic model of the selected number of spokes, it was redesigned to be lightweight while maintaining stiffness by utilizing topology optimization software. By comparing and reviewing the structural analysis results of the basic model and the redesigned model, a design technique that can maintain structural safety and reduce wheel mass was proposed.
        4,000원
        6.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        로터 블레이드는 조류발전 터빈의 매우 중요한 구성 요소로서, 해수의 높은 밀도로 인해 큰 추력(Trust force)와 하중(Load)의 영 향을 받는다. 따라서 블레이드의 형상 및 구조 설계를 통한 성능과 복합소재를 적용한 블레이드의 구조적 안전성을 반드시 확보해야 한 다. 본 연구에서는 블레이드 설계 기법인 BEM(Blade Element Momentum) 이론을 이용해 1MW급 대형 터빈 블레이드를 설계하였으며, 터빈 블레이드의 재료는 강화섬유 중의 하나인 GFRP(Glass Fiber Reinforced Plastics)를 기본으로 CFRP(Carbon Fiber Reinforced Plastics)를 샌드위치 구조에 적용해 블레이드 단면을 적층(Lay-up)하였다. 또한 유동의 변화에 따른 구조적 안전성을 평가하기 위해 유체-구조 연성해석 (Fluid-Structure Interactive Analysis, FSI) 기법을 이용한 선형적 탄성범위 안의 정적 하중해석을 수행하였으며, 블레이드의 팁 변형량, 변형 률, 파손지수를 분석해 구조적 안전성을 평가하였다. 결과적으로, CFRP가 적용된 Model-B의 경우 팁 변형량과 블레이드의 중량을 감소시 켰으며, 파손지수 IRF(Inverse Reserce Factor)가 Model-A의 3.0*Vr를 제외한 모든 하중 영역에서 1.0 이하를 지시해 안전성을 확보할 수 있었 다. 향후 블레이드의 재료변경과 적층 패턴의 재설계뿐 아니라 다양한 파손이론을 적용해 구조건전성을 평가할 예정이다.
        4,000원
        8.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we collect water control valves that have had accidents due to existing cracks, etc. are collected, and propose investigation items for strengthening the valve structural safety evaluation through a series of analyzes from valve specifications to physicochemical properties are proposed. The results of this study are as follows. First, there was a large variation in the thickness of the body or flange of the valves to be investigated, which is considered to be very important factor, because it may affect the safety of the valve body against internal pressure and the flange connected with the bolt nut. Second, 60% of the valves under investigation had many voids in the valve body and flange, etc. and the decrease in thickness due to corrosion was relatively large on the inner surface in contact with water rather than the outer surface. It is judged that the investigation of depth included voids is very important factor. Third, all valves to be investigated are made of gray cast iron foam, and therefore it is judged that there is no major problem in chemical composition. It is judged that the chemical composition should be investigated. Fourth, as a physical investigation item, the analysis of metal morphology structure seems to be a very important factor for nodular cast iron from rather than a gray cast iron foam water valve with a flake structure. As it was found to be 46.7~68.8% of the standard recommended by KS, it could have a direct effect on damage such as cracks, and therefore it is judged that the evaluation of tensile strength is very important in evaluating the safety of the valve.
        4,500원
        10.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As modern industries are highly being developed, it is required that mechanical parts have to be manufactured with a high precision. In order to have precise parts, error-free designs have to be done before manufacturing with accuracy. For this intention being fulfilled, a mechanical analysis is essential for design proof. Nowadays, FEM simulation is a popular tool for verifying a machine design. In this paper, an impeller, being utilized in a compressor or an oil mixer as an actuator, is studied for an evaluation. The purpose of this study is to present a safety of an impeller for a proof of its mechanical stability. A static analysis for stress, strain, and deformation within a regular usage is examined. This simulation test shows 357.26×106 Pa for maximum equivalent stress and 0.207mm for total deformation. A fatigue test is carried to provide durability and its result shows that minimum safety factor is 3.2889, which guarantees that it runs without a fatigue failure in 106 cycles. The natural frequencies for the impeller is ranged from 228.09Hz to 1,253.6Hz for the 1st to the 6th mode. Total deformations at these natural frequencies are shown from 6.84mm to 12.631mm. Furthermore, Campbell diagram reveals that a critical speed is not found throughout regular rotational speeds. From the test results for the analysis, this paper concludes that the suggested impeller is proved for its mechanical safety and good to utilize at industries.
        4,000원
        12.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해양플랜트는 발주처와 선급에서 요구하는 다양한 항목들을 설계할 시에 반영하여야 한다. 특히, 해양구조물에 탑재되는 Topside Module의 경우 육상플랜트와는 다르게 공간적 제약이 크고 구조물의 움직임과 같은 해상 환경조건 및 안전과 관련된 요구사항들이 많아 그 설계 과정이 매우 까다롭다. 본 연구에서는 Topside Module에 들어가는 주요장비 중 하나인 HPU(Hydraulic Power Unit) 구조물에 작용하는 하중을 DNVGL 규칙에 따라 계산하고, 각 하중조건에 따른 구조안전성 평가를 진행하였고 개발된 제품의 구조 신뢰성을 향상하고자 하였다. 구조해석은 범용프로그램인 MSC 소프트웨어를 사용하였고, 총 5가지 하중 조건으로 구조해석을 진행하여 다양한 움직임에 대한 안전성을 검토하였다. 그 결과 선미 방향 Pitching 상태(Load Case 5)에서 최대 응력이 발생하였고, 응력 수준은 허용응력의 약 85 % 수준이고, 최대변위는 허용치의 약 5 % 수준으로 구조안전성이 확인되었으며 부재 간 간섭은 발생하지 않았다.
        4,000원
        13.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tomb of King Muryeong, located in Sonsan-ri, was found vulnerable due to leakages during since the summer of 2016. This research aims to evaluate structural safety of the Tomb under the tumulus. Site surveys were conducted to find vulnerable inner parts. Structural safety assessment is presented based on both site survey results and analytical results obtained through FEM analysis using the ANSYS program. The underground structure was explicitly modeled to focus on two types of loadings: design loads and actual gravity loads. In general, the tomb does not show any critical deflection increase or damage through the analytical investigation. However, maintenance through continuous monitoring is necessary to prevent severe deflections and stress concentrations since the rigidity of the tomb materials are very vulnerable and likely to be reduced due to prolonged weathering and continuous rain leakage.
        4,000원
        15.
        2019.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        항공기 충돌사고는 1970년대부터 원자력발전소의 인허가에 중요하게 고려되어 온 외부 사건의 하나였다. 9.11 테러 이후 세계 각국에서는 사고로 인한 항공기 충돌에 더하여 의도된 항공기 충돌에 대비한 안전성 평가를 수행해오고 있으며 일부 국가에서는 이를 법제화하여 인허가의 중요한 요건으로 다루고 있다. 항공기 충돌에 대한 안전성 평가는 여러가지 요인으로 인하여 쉽지 않은 작업이며 보다 신뢰성 있는 평가를 위한 연구개발이 세계 각국에서 진행 중이다. 본 논문에서는 각국의 항공기 충돌에 대비한 안전성 평가 요건의 법제화 현황을 사고로 인한 충돌과 의도된 충돌의 경우로 분리하여 정리하였다. 다 양한 조건의 항공기 충돌에 대한 안전성 평가를 위하여 수행되어 온 연구 중 주요한 것들을 정리하였으며 특히 사용후핵연 료 건식저장시설에 대한 내용을 위주로 다루었다.
        4,900원
        17.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Yangjindang house, which is located in Sang-ju province of South Korea, is one of the special Hanok structures dated back to Joseon dynasty. This study aims to examine structural safety of the Yangjindang wood frame building considering dynamic parameters such as the natural frequency and damping ratio. The numerical model of the wood frame building is implemented using Midas Gen, especially the wood joint where column and beam were connected. The behavior of the actual frame building was compared with the modeling results. In addition, structure responses such as shear force, axial force, flexural moment and deflections were calculated and compared with the allowable limits. Numerical results show that, generally, despite of some local members shear failure, Yangjindang’s structural response does not exceed the limitation according to current standards.
        4,000원
        18.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Among the soft ground improvement methods, PBD is the most common construction method because it is cheap and construction is fast. However, if the ground is rigid, additional work is required. In this study, the structural safety, natural vibration, and safety angle of the steel vertical tower structure were evaluated in the development of the PBD composite perforator which can be combined with drilling work and PBD construction. Structural safety was assessed when the wind load of 20 m/s was simultaneously applied to the PBD construction load of 20 tons, the perforating operation of 25 tons, and the wind speed of 50 m/s was applied only to the wind load. The natural frequencies were evaluated up to the sixth mode, and the safety angle was evaluated for static and dynamic safety angles.
        4,000원
        19.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to evaluate the structural safety of cultural altar since its bearing capacity has been questioned due to weathering damages and sectional defections. This evaluation process consists two stages; which the first is field investigation and the second is structural modeling and analysis. Based on field investigation, all of the structural members supporting the altar were carefully examined and all the findings were accounted for the development of the structural modeling using the Midas computer program. Using a 3D scanner, the weight of the Buddha statue was applied to the structural modeling. Then, according to the allowable stress design method of KBC2016, the structural safety was evaluated. Based on this result, replacements of several structural members were recommended to increase the structural safety and value of cultural property.
        4,000원
        20.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the demand for high-speed and high-precision machining increases, the need for cooling and filtering of cutting oil is high. A new concept of coolant heat exchange filter is developed by installing cooling coil through which refrigerant(R410-a) passes through the coolant filtering device. For structural safety evaluation of the heat exchanger filter for cutting oil suppling device of machine tool, thermal stress and vibration analysis were performed using ANSYS program. The results of structural and thermal stress analyses have led to the conclusion that the cooling system has structural stability. From modal analysis, first natural frequency is 12.37 hz and deformation is 22.041 mm. Sixth natural frequency is 26.887 hz and deformation is 25.563 mm.
        4,000원
        1 2