검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 363

        101.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 한우 보증씨수소 844두를 출생년도를 기준으로 8개 집단으로 분류하고, 각 개체들의 친자확인용 유전자 마커정보를 농협경제지주 한우개량사업소 홈페이지에서 제공 받아 유전적 다양성 및 구조 변화 분석에 활용하였다. 한우 보증씨수소 전체 집단의 대립유전자수(number of alleles)의 평균은 10.54개, 기대 및 관측 이형접합율(Hex, Hob)의 평균은 각각 0.764, 0.773, 다형성 정보량 지수(PIC)의 평균은 0.727 그리고 Fis의 평균은 –0.014로 확인되었다. 한우 보증씨수소 집단을 출생년도 별로 구분한 8개 집단의 유전적 다양성 및 구조 분석 결과, D집단(2005-2004년)의 기대이형접합율(0.777), 관측이형접합율(0.792) 그리고 다형성정보지수(0.740)가 가장 높은 것으로 확인되었다. C집단(2003-2004년)과 E집단(2007-2008년)에서는 기대이형접합율이 관측이형접합율 보다 큰 것으로 확인되었고, 나머지 그룹 모두에서는 관측이형접합율이 기대이형접합율 보다 큰 것으로 확인되었다. 대립유전자 출현빈도를 기반으로 유전적 조성과 구조를 추론하기 위해 STRUCTURE software를 이용하여 분석한 결과 세대가 지남에 따라 특정 유전적 성분의 변화 또는 비중의 증감을 확인 할 수 있었다. 이는 개량 목표를 설정하고 지속적으로 추진되고 있는 개량 사업이 한우 씨수소 집단의 유전적 구조 변화에 영향을 미치고 있음을 확인 할 수 있는 중요한 자료로, 한우 개량 사업의 효율적인 추진을 위해 유용하게 활용 될것으로 사료된다.
        4,000원
        102.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Structural analyses were performed for a movable seat mechanism applied in a new type shower commode wheel chair. The wheel chair has slide rails below the wheel chair seat to help patient move to bed side. The slide rails and seat were modeled for the structural simulation. Experiments were performed to validate simulation results by using strain gage Rosettes. Student t-test was performed to the experimental data, which showed that the stresses obtained from the simulation were not significantly different from those obtained from the experiments. The slide rail structure was found to give a safety factor of 2.4 under 80Kg user weight with ten rollers used for seat support. The safety factor much increased by placing more rollers under the wheel chair seat. Our simulation revealed that rollers installed only in the central and corner regions were used as supports due to the bending deformation of the seat.
        4,000원
        103.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Prior to the experimental and production stages of the center pillar, a structural analysis must be carried out at the design stage. The commercial software for the structural analysis at the design stage provides benefits such as cost-effective and time economy. In this study, the structural analysis was performed to investigate the stress and displacement characteristics of the center pillar for five types of the applied loads using SolidWorks. The equivalent stress was relatively larger on the outside plate than the inside plate. The maximum equivalent stress according to the change of the applied loads increased linearly in the range of 47~181%. The deformation was larger at the upper end of the center pillar, and the maximum displacement was linearly increased in the range of 35~187%. The analysis results of the center pillar according to the applied loads show that the location and distribution of the maximum stress and displacement of the center pillar can be predicted.
        4,000원
        104.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the structural analysis was performed by using Solidworks program to investigate the stress and displacement characteristics of upper desk and table arm depending on the types and positions of load applied to the height-adjustable table(Cases 1, 2, 3, 4). The simulation was used to model the table and create the mesh for computational analysis. The height-adjustable table consists of three parts, upper desk, table arm and support body. Case 3 with the side concentrated load showed the maximum stress and maximum displacement at table arm and upper desk. From the stress and displacement characteristics of the upper desk and table arm, the stresses at the bending part of table arm and the deflection at the front part of upper desk were the greatest.
        4,000원
        107.
        2018.05 구독 인증기관·개인회원 무료
        Subsurface cavities in the asphalt pavement which can cause road depression and cave-in accidents influence on the safety of pedestrians and vehicle drivers in the urban area. The existence of subsurface cavity can increase the tensile strain at the bottom of asphalt layer which is an indicator of fatigue cracking potential, and leads to the weakening of the pavement structural capacity. In this study, the finite element (FE) analysis was conducted to examine the relationship between the critical pavement responses and influencing factors, such as cavity depth and size, asphalt layer thickness, and asphalt concrete modulus. The surface deflections and tensile strains calculated from the ABAQUS FE program were compared to those from ILLIPAVE. It is found from this comparison that there are a good relationship between two analysis results. A three dimensional finite element model which is essential to simulate the hexahedral cavity were used to generate the synthetic database of critical pavement responses. To validate the developed model, the deflection data obtained from field Falling Weight Deflectometer (FWD) testing in four different locations were compared to FE deflections. It is found that the center deflections obtained from the FWD testing and FE analysis are similar to each other with an error values of 2.7, 4.4, 5.5, and 11.9 % respectively. The FE model developed in this study seems to be acceptable in simulating actual field cavity condition. On the basis of the data in the database, various analyses were conducted to estimate the effect of influencing factors on the critical pavement responses. It was found that the tensile strain at the bottom of asphalt layer is affected by all the factors but the most affected by the cavity depth and asphalt concrete modulus. Further studies are recommended to properly account for the effect of cavity’s geometry to pavement response.
        109.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, comparative analysis of the 9.12 Gyeongju and 11.15 Pohang earthquakes was conducted in order to provide probable explanations and reasons for the damage observed in the 11.15 Pohang earthquake from both earthquake and structural engineering perspectives. The damage potentials like Arias intensity, effective peak ground acceleration, etc observed in the 11.15 Pohang earthquake were generally weaker than those of the 9.12 Gyeongju earthquake. However, in contrast to the high-frequency dominant nature of the 9.12 Gyeongju earthquake records, the spectral power of PHA2 record observed in the soft soil site was highly concentrated around 2Hz. The base shear around 2 Hz frequency was as high as 40% building weight. This frequency band is very close to the fundamental frequency of the piloti-type buildings severely damaged in the northern part of Pohang. Unfortunately, in addition to inherent vertical irregularity, most of the damaged piloti-type buildings had plan irregularity as well and were non-seismic. All these contributed to the fatal damage. Inelastic dynamic analysis indicated that PHA2 record demands system ductility capacity of 3.5 for a structure with a fundamental period of 0.5 sec and yield base shear strength of 10% building weight. The system ductility level of 3.5 seems very difficult to be achievable in non-seismic brittle piloti-type buildings. The soil profile of the PHA2 site was inversely estimated based on deconvolution technique and trial-error procedure with utilizing available records measured at several rock sites during the 11.15 Pohang earthquake. The soil profile estimated was very typical of soil class D, implying significant soil amplification in the 11.15 Pohang earthquake. The 11.15 Pohang earthquake gave us the expensive lesson that near-collapse damage to irregular and brittle buildings is highly possible when soil is soft and epicenter is close, although the earthquake magnitude is just minor to moderate (M 5+).
        4,000원
        110.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A study has been conducted on the structural analysis to reduce the light weight of the electric vehicle rotor shaft. ANSYS Static Structural was used for structural analysis. For weight reduction, the solid shaft was converted into a hollow shaft. The yield strength of the existing material SCM 440 is 655MPa, but to increase its safety, the yield strength is changed to 1,030MPa with SCM822H. At this time, weight reduction of about 47% was achieved. The resonance frequency of the rotor shaft was determined by vibration analysis and the structural safety was analyzed.
        4,000원
        111.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 NURBS 기반 아이소 지오메트릭 쉘 해석을 위해 다중 패치 해석 모델을 정식화하였다. 기존 연구를 통해 개발된 단일 패치로 구성된 전단 변형을 고려한 쉘 요소에 대해 일반 좌표계에서 기하학적으로 엄밀한 쉘 구조물의 아이소지오메트릭 해석 모델을 도입하고 매개변수 연속성을 고려하여 다중 패치 모델로 확장하였다. 인접 곡면의 노트 요소가 결합 경계를 통해 조화를 이루는 경우에 대해 0차와 1차 매개변수 연속성 조건을 고려하였으며, 두 패치 간 마스터-슬레이브 관계를 정립하여 종속된 한 곡면의 자유도를 상대 곡면의 자유도로 표시하여 모델 크기를 줄이면서 두 곡면을 결합하였다. 다중 패치 쉘 예제에 대해 0차와 1차 연속성 조건을 각각 적용하여 구조해석을 수행하여 1차 연속성 조건의 주요한 특성들을 확인하였다. 또한 각 연속성 조건에 대한 해의 수렴 특성을 검토하였으며 결합 경계에서의 두 패치의 연속성을 확인하였다.
        4,000원
        112.
        2018.04 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to compare and evaluate the safety of the facility using the Abaqus finite element analysis program according to the material characteristics like steel and GFRP.
        3,000원
        113.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this paper is to clarify the structural stability of 30m fly(maximum working radius of 30m) and telescopic boom with composition. In order to reduce the weight and insulate, the boom of special vehicle has a 3-stage telescopic boom of DOMEX960, pocket part of acetal, 2-stage refracting boom of ATOS80, insulation boom of glass fiber composition and effector. In this process, CATIA is applied to create 3D modeling, then ANSYS are performed the structural analysis. The structural analysis is performed for a case where the thickness of the insulating boom of the ATOS 80 is 7[㎜] and the thickness of the insulating boom of the FRP material is 15[㎜] and 16[㎜].
        4,000원
        114.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study highlights the theme of safety leadership in railway organization, conducting empirical analysis on the relationship between safety climates, safety leadership, safety behavior, and accident. The empirical test results based on questionnaires received from 223 train drivers working at A subway firm indicated that relationship between CEO's safety philosophy, and safety communication showed a significant positive effect on boss's safety leadership. And boss's safety leadership showed a positive influence on observation belonging to safety behavior, which in turn showed a significant negative relationship with mistake. However, mistake, observation and violation were shown that there are no relationship with accidents.
        4,000원
        115.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In this study, a three-dimensional nonlinear finite element analysis (FEA) model for airport concrete pavement was developed using the commercial program ABAQUS. Users can select an analysis method and set the range of input parameters to reflect actual conditions such as environmental loading.METHODS : The geometrical shape of the FEA model was chosen by considering the concrete pavement located in the third-stage construction site of Incheon International Airport. Incompatible eight-node elements were used for the FEA model. Laboratory test results for the concrete specimens fabricated at the construction site were used as material properties of the concrete slab. The material properties of the cement-treated base suggested by the Federal Aviation Administration(FAA) manual were used as those of the lean concrete subbase. In addition, preceding studies and pavement evaluation reports of Incheon International Airport were referred for the material properties of asphalt base and subgrade. The kinetic friction coefficient between the concrete slab and asphalt base acquired from a preceding study was used for the friction coefficient between the layers. A nonlinear temperature gradient according to slab depth was used as an input parameter of environmental loading, and a quasistatic method was used to analyze traffic loading. The average load transfer efficiency obtained from an Heavy falling Weight Deflectomete(HWD) test was converted to a spring constant between adjacent slabs to be used as an input parameter. The reliability of the FEA model developed in this study was verified by comparing its analysis results to those of the FEAFAA model.RESULTS : A series of analyses were performed for environmental loading, traffic loading, and combined loading by using both the model developed in this study and the FEAFAA model under the same conditions. The stresses of the concrete slab obtained by both analysis models were almost the same. An HWD test was simulated and analyzed using the FEA model developed in this study. As a result, the actual deflections at the center, mid-edge, and corner of the slab caused by the HWD loading were similar to those obtained by the analysis.CONCLUSIONS : The FEA model developed in this study was judged to be utilized sufficiently in the prediction of behavior of airport concrete pavement.
        4,000원
        116.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        117.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        These days, the interests on the high speed handling robots are increasing because it is important to get down the unit cost of production to get the price competitiveness. The SCARA robot with simple mechanism is more suitable to implement the high speed robot system as well known. The moving parts of SCARA robot have to be designed for high speed. But the structural analysis is induced by the robot links because they drive in high acceleration and deceleration. In this reason, the structural analysis of the high speed SCARA robot is very important in the design process. In this paper, the study on the structural analysis of a high speed SCARA robot has been done and the research results will be introduced.
        4,000원
        118.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SUS hexagonal bar, which is manufactured by drawing process of SUS circular bar, have been widely used to make various adapters and fittings. The purpose of this study is to investigate the characteristics and stability of variable roll unit including stand module. Stand module is essential part of variable roll unit. Structural analysis was performed to predict the stability of stand module using 3 loads (50, 75, 100 Ton), thus it may be of help to the manufacture of stand module. As the results, internal ring of bearing showed maximum equivalent stress, and moreover bearing, shaft and roller had to be preferentially considered in order to maintain its stability. In cases of 50 and 75 Ton, there were no problems for stabilities, respectively, on the other hand, problem for stability may occur in case of 100 Ton.
        4,000원