검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.05 구독 인증기관·개인회원 무료
        Tributyl phosphate (TBP) is a well-known and important compound in the nuclear industry for the nuclear fuel reprocessing, and it is also used in a various field such as plastic industry as antifoaming agent. Untreated organic pollutants in TBP can remain in the soil water and cause serious environmental pollution, thus it should be degraded through environmentally friendly methods. The non-thermal plasma-based advanced oxidation process (AOP) is one of the most widely studied and best developed processes owing to its simple structure and ease of operation. In this study, a plasma-based AOP was stably generated using submerged multi-hole dielectric barrier discharge (DBD) and applied to relatively high concentration of TBP solution. A submerged DBD plasma system was designed to directly interact with water, thereby producing reactive oxygen species (ROS) and functioning as a powerful oxidizer. Additionally, UV, O3, and H2O2 are generated by the developed plasma system without using any other additives to produce OH radicals for degrading organic pollutants; therefore, this system circumvents the use of complex and advanced oxidation processes. The electrical properties and concentrations of the active species were analyzed to establish optimal plasma operating conditions for degrading TBP solution. The results were analyzed by measuring the total organic carbon (TOC) and changes in solution properties. Based on these results, a degradation mechanism of TBP solution is proposed. After 50 min of plasma treatment, the concentration of TOC was gradually decreased. Consequently, we found that plasma-based AOP using submerged multi-hole DBD has advantages as an alternative technology for degrading organic pollutants such as TBP solution.