검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 53

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated the dynamic characteristics of three irregular building models to analyze the effectiveness of displacement response control with Tuned Mass Damper (TMD) installation in twisted irregular buildings. The three irregular models were developed with a fixed angle of twist per story at one degree, subjected to three historical seismic loads and resonant harmonic loads. By designing TMDs with linear and dashpot attributes, we varied the total mass ratio of the installed TMDs from 0.00625% to 1.0%, encompassing a total of 10 values. Two TMDs were installed at the center of the top story of the analysis model in both X and Y directions to evaluate displacement response control performance based on TMD installation. Our findings suggest that the top displacement response control performance was most effective when a 1.0% TMD was installed at the top layer of the analysis model.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the seismic response characteristics of the three analysis model with or without TMD were investigated to find out the effective dome shape. The three analysis models are rib type, lattice type and geodesic type dome structure composed of space frame. The maximum vertical and horizontal displacements were evaluated at 1/4 point of the span by applying the resonance harmonic load and historical earthquake loads (El Centro, Kobe, Northridge earthquakes). The study of the effective TMD installation position for the dome structure shows that seismic response control was effective when eight TMDs were installed in all types of analysis model. The investigation of the efficiency of TMD according to dome shape presents that lattice dome and geodesic dome show excellent control performance, while rib dome shows different control performance depending on the historical seismic loads. Therefore, lattice and geodesic types are desirable for seismic response reduction using TMD compared to rib type.
        4,000원
        3.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tuned mass damper (TMD) is widely used to reduce dynamic responses of structures subjected to earthquake loads. A smart tuned mass damper (STMD) was proposed to increase control performance of a traditional passive TMD. A lot of research was conducted to investigate the control performance of a STMD based on analytical method. Experimental study of evaluation of control performance of a STMD was not widely conducted to date. Therefore, seismic response reduction capacity of a STMD was experimentally investigated in this study. For this purpose, a STMD was manufactured using an MR (magnetorheological) damper. A simple structure presenting dynamic characteristics of spacial roof structure was made as a test structure. A STMD was made to control vertical responses of the test structure. Two artificial ground motions and a resonance harmonic load were selected as experimental seismic excitations. Shaking table test was conducted to evaluate control performance of a STMD. Control algorithms are one of main factors affect control performance of a STMD. In this study, a groundhook algorithm that is a traditional semi-active control algorithm was selected. And fuzzy logic controller (FLC) was used to control a STMD. The FLC was optimized by multi-objective genetic algorithm. The experimental results presented that the TMD can effectively reduce seismic responses of the example structures subjected to various excitations. It was also experimentally shown that the STMD can more effectively reduce seismic responses of the example structures conpared to the passive TMD.
        4,000원
        4.
        2022.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The TMD has a simpler structure than other vibration control devices and shows excellent control performance for the standardized vibration occurring in the structure. However, when the vibration cycle of the structure coincides with the vibration cycle of the TMD due to the sudden external loads, the off-tuning occurs, which threatens the structure while increasing the vibration width of the TMD. Therefore, Electromagnetic Tuned Mass Damper (ETMD) was developed as a semi-active TMD that prevents off-tuning while exhibiting excellent control performance like TMD. To verify the control performance of the developed ETMD, the bending behavior control performance evaluation experiment using a simple beam bridge was performed. The experimental method compared the mutual control power by experimenting with the existing TMD method and the developed ETMD under nine excitation frequency conditions. As a result, it was confirmed that the control effect of ETMD was about 4.85% higher than that of TMD at 3.02Hz, which generates the maximum displacement in the simple beam bridge. Also, the off-tuning occurred in some excitation conditions when using TMD, although the off-tuning did not occur when using ETMD. Therefore, the excellent control performance of the ETMD developed in this study was verified.
        4,000원
        5.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A smart tuned mass damper (TMD) is widely studied for seismic response reduction of various structures. Control algorithm is the most important factor for control performance of a smart TMD. This study used a Deep Deterministic Policy Gradient (DDPG) among reinforcement learning techniques to develop a control algorithm for a smart TMD. A magnetorheological (MR) damper was used to make the smart TMD. A single mass model with the smart TMD was employed to make a reinforcement learning environment. Time history analysis simulations of the example structure subject to artificial seismic load were performed in the reinforcement learning process. Critic of policy network and actor of value network for DDPG agent were constructed. The action of DDPG agent was selected as the command voltage sent to the MR damper. Reward for the DDPG action was calculated by using displacement and velocity responses of the main mass. Groundhook control algorithm was used as a comparative control algorithm. After 10,000 episode training of the DDPG agent model with proper hyper-parameters, the semi-active control algorithm for control of seismic responses of the example structure with the smart TMD was developed. The simulation results presented that the developed DDPG model can provide effective control algorithms for smart TMD for reduction of seismic responses.
        4,000원
        7.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As people's living standards and cultural standards have developed, interest in culture and art has increased, and the demand for large space structures where people can enjoy art, music, and sports has increased. As it accommodates a large number of personnel, it is most important to ensure safety of large spatial structures, and can be used as a space where people can evacuate in case of a disaster. Large spatial structures should be prepared for earthquake loads rather than wind loads. In addition to damage to the structure due to earthquakes, there are cases in which it was not utilized as a space for evacuation due to the fall of objects installed on top of the structure. Therefore, in this study, the dome-shaped large spatial structure is generalized and the displacement response according to the number of installations, position and mass is analyzed using a tuned mass damper(TMD) that is representative vibration control device.
        4,000원
        8.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.
        4,000원
        9.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.
        4,000원
        10.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the displacement response to seismic loads was analyzed after installing TMD in spatial structures and high-rise buildings. In the case of a spatial structures, since it exhibits complex dynamic behavior under the influence of various vibration modes, it is not possible to effectively control the seismic response by installing only one TMD, unlike ordinary structures. Therefore, after installing eight TMDs in the structure, the correlation between displacement response and mass ratio was examined while changing the mass. The TMD must be designed to have the same frequency as the structure frequency so that the maximum response reduction effect can be exhibited. It can be confirmed that the most important variable is to select the optimal TMD mass in order to install the TMD on the structure and secure excellent control performance against the earthquake load. As a result of analyzing the TMD mass ratio, in the case of high-rise buildings, a mass ratio of 0.4% to 0.6% is preferable. In spatial structures, it is desirable to select a mass ratio of 0.1% to 0.2%. Because this study is based on the theoretical study based on numerical analysis, in order to design a TMD for a real structure, it is necessary to select within a range that does not affect the safety of the structure.
        4,000원
        11.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the retractable-roof spatial structure was chosen as the analytical model and a tuned mass damper (TMD) was installed in the analytical model in order to control the seismic response. The analysis model is mainly consisted of runway trusses (RT) and transverse trusses (TT), and the displacement response was analyzed by installing TMD on those trusses. The mass of the single TMD which is installed in the analytical model was set to 1% of the total structure mass and the total TMD mass ratio was set to be 8% or 6%. In addition, the mass of a single TMD was varied depending on the number of installations. As a result of analyzing the optimal number of installations of TMD, the displacement response was reduced in all cases compared to the case without TMD. Above all, the case with 8 TMDs was the most effective in reducing he displacement response. However, in this case, as the load on the upper structure of the retractable-roof spatial structure increases, the total mass ratio of TMD was maintained and the number of TMDs was increased to reduce the mass ratio of one TMD.
        4,000원
        12.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the precedent study, the retractable-roof spatial structure was selected as the analytical model and a tuned mass damper (TMD) was installed to control the dynamic response for the earthquake loads. Also, it is analyzed that the installation location of TMD in the analytical model and the optimal number of installations. A single TMD mass installed in the analytical model was set up 1% of the mass of the whole structure, and the optimum installation location was derived according to the number of change. As a result, it was verified that most effective to install eight TMDs regardless of opening or closing. Thus, in this study, eight TMDs were installed in the retractable-roof spatial structure and the optimum mass ratio was inquired while reducing a single TMD. In addition, the optimum mass distribution ratio was identified by redistributing the TMD masses differently depending on the installation position, using the mass ratio of vibration control being the most effective for seismic load. From the analysis results, as it is possible to confirm the optimum mass distribution ratio according to the optimum mass ratio and installation location of the TMD in the the retractable-roof spatial structure, it can be used as a reference in the TMD design for large space structure.
        4,000원
        13.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, TMD(Tuned Mass Damper) is installed in a retractable-roof spatial structure in order to investigate dynamic response characteristics according to mass ratio and installed position of TMD on large spatial structures. The example analytical model is generated based on the Singapore sports hub stadium. Twenty eight analytical models are used to investigate optimal installation position of TMD for the example retractable-roof spatial structure using 4 to 16 TMDs. The mass of one TMD is set up 1% of total mass at the example analytical model. Displacement response ratio of model with TMD is compared with that of base model without TMD. It has been found from numerical simulation that it is more effective to install TMD at the edge of the spatial structure rather than to concentrate the TMD at the center of the spatial structure.
        4,000원
        14.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 마찰력에 따른 TMD의 작동-정지조건과 각 조건에 따른 운동방정식을 정리하고, TMD의 마찰계수가 풍진동 제어성능에 미치는 영향을 수치해석을 통하여 확인하였다. 일반적인 하중과 달리 풍하중은 크기와 방향의 변화가 크기 때문에 TMD 는 마찰력에 의하여 작동-정지상태를 반복하게 되므로, TMD의 마찰계수를 주요 변수로 설정하였다. 또한 외부하중의 크기, 구조물의 진동수, TMD의 질량비도 매개변수로 설정하여 TMD의 제진성능에 대한 영향을 파악하고자 하였다. 자유진동, 조화강제진동, 풍진동에 대한 수치해석의 결과, 외부하중의 크기가 작고, 구조물의 진동수가 낮을수록 마찰계수에 의한 TMD의 제진성능의 손실이 커질 수 있음을 확인하였으며, 초고층 건물에 대한 TMD 설계시 마찰계수의 영향을 반드시 고려하여야 할 것으로 판단된다.
        4,000원
        15.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.
        4,000원
        16.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a structural design method of a smart tuned mass damper (TMD) for a retractable-roof spatial structure under earthquake excitation was proposed. For this purpose, a retractable-roof spatial structure was simplified to a single degree of freedom (SDOF) model. Dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition. This condition was considered in the numerical simulation. A magnetorheological (MR) damper was used to compose a smart TMD and a displacement based ground-hook control algorithm was used to control the smart TMD. The control effectiveness of a smart TMD under harmonic and earthquake excitation were evaluated in comparison with a conventional passive TMD. The vibration control robustness of a smart TMD and a passive TMD were compared along with the variation of natural period of a simplified structure. Dynamic responses of a smart TMD and passive TMD under resonant harmonic excitation and earthquake load were compared by varying mass ratio of TMD to total mass of the simplified structure. The design procedure proposed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.
        4,000원
        17.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, measures for reducing noise and vibration of a railroad station are actively being developed to enhance its property value and comfort level of passengers. In this paper, the applicability of the recently developed vibration mitigation method utilizing a platform TMD (Tuned Mass Damper) by installing a spring-damper system beneath the platform is experimentally verified using a bench scale structure. The two-story bench scale structure is built to simulate a real railroad station, and vibration reduction effect is verified by comparing acceleration before and after applying the platform TMD at the 2nd floor of the structure. The design parameters of the platform TMD system is determined based on vibration analysis result and the MTMD (Multiple TMD) theory recently developed to enhance the effectiveness of the platform TMD method. The vibration is excited to the bench-scale structure using a vibrator. The performance test result for a spring-damper system is also presented. The result of the experiment reveals that the platform TMD method can reduce the vibration of the bench-scale structure by greater than 5dB(V).
        4,000원
        18.
        2017.04 구독 인증기관·개인회원 무료
        The study presents technology which can decrease the vibration of railroad station via adopting a friction bearing system beneath a platform. The platform itself then constitutes a tuned mass damper system (TMD) as the bearing provides stiffness and damping of the TMD system. To increase the robustness of the TMD system, the bearing system with adjustable stiffness is utilized. The vibration reduction performance of the TMD system is verified via numerical analysis on an elevated railroad station known as having a structural type with highest noise and vibration level. The numerical analysis is performed using a commercial program, ABAQUS. The vibration analysis is performed considering vehicle-track-structure interaction. The result of the numerical analysis shows that the TMD technology can reduce significant amount of vibration of a railroad station.
        19.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A retractable-roof spatial structure is frequently used for a stadium and sports hall. A retractable-roof spatial structure allows natural lighting, ventilation, optimal conditions for grass growth with opened roof. It can also protects users against various weather conditions and give optimal circumstances for different activities. Dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition. A tuned mass damper (TMD) is widely used to reduce seismic responses of a structure. When a TMD is properly tuned, its control performance is excellent. Opened or closed roof condition causes dynamic characteristics variation of a retractable-roof spatial structure resulting in off-tuning. This dynamic characteristics variation was investigated. Control performance of a passive TMD and a smart TMD were evaluated under off-tuning condition.
        4,000원
        20.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        부가적인 제어장치를 사용하여 구조물 감쇠를 증가시키는 것은 건축물의 풍응답을 제어하기 위해 자주 사용되는 방법 중 하나이다. 본 연구의 목적은 TMD와 AMD의 다중모드응답 제어성능을 비교하는 것이다. 실제 AMD가 설치된 39층 건물을 사용하였으며, 이전 연구에서 시스템식별을 통해 얻어진 모드정보에 따라 수정된 수치해석모델을 사용하였다. AMD 제어력은 속도피드백, 뱅뱅 제어, LQR 알고리즘을 사용하여 결정하였다. 1차 모드의 RMS 응답을 유사한 수준으로 맞추는 조건에서 TMD와 AMD의 고차모드제 어성능을 비교하였다. 그 결과 TMD는 단일 모드에 대해서만 응답을 저감시킬 수 있었으나, AMD는 다중모드 제어가 가능함을 확인하였다.
        4,000원
        1 2 3