검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 227

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This review paper aimed to comprehensively assess the ventilation methods and ventilation rates of livestock sheds, various livestock odor mitigation technologies, and the design flow rate of odor mitigation devices. The most efficient ventilation method for livestock odor control was found to be mechanical ventilation. When livestock odor is at its most severe during summer, ventilation systems are operated at the maximum ventilation rate, which is 5-25 times higher than the ventilation rate in winter. Therefore, the mitigation facilities of livestock odor must be designed while considering the maximum ventilation rate. There is a significant amount of research data on various livestock odor control technologies using various physical, chemical, biological, and complex technologies applied to livestock farms. Biofiltration and photocatalytic oxidation are considered the most promising methods due to their cost-effectiveness and simplicity. Biofiltration is effective for removing hydrophilic odors, but requires improvement for the efficient removal of hydrophobic odors and the control of accumulated excess biomass. The advantages of the photocatalytic oxidation method include its excellent hydrogen sulfide and ammonia removal rates and relatively low ozone emissions. However, it requires technology to reduce nitrous oxide emissions. Investment in installing and operating these odor mitigation technologies is only realistic for large-sized farms. Therefore, it is imperative for small and medium-sized livestock farms to develop odor mitigation technology that is inexpensive and has low installation, operation, and maintenance costs.
        5,500원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Based on my attendance at the CIPA International Symposium(CIPA2023) organized by the International Scientific Committee on Heritage Documentation(ICOMOS), this paper explored research cases applying digital technologies, including BIM, to architectural heritage. The researches presented at this symposium were categorized into specific areas: data acquisition, data management, data sharing&experience. Through this classification, an analysis of research cases in architectural heritage utilizing digital technology was conducted. By categorizing the 43 academic papers from the CIPA2023 based on research themes, trends in the digital architecture field were analyzed, providing insights into future research directions for the digital acquisition, management, sharing, and experiential aspects of Korean architectural heritage. In conclusion, it is deemed necessary to reference and supplement the methodologies, including algorithms, workflows, and approaches developed in each study, to effectively apply methodologies suitable for the characteristics of Korean architectural heritage and its data.
        4,500원
        7.
        2023.11 구독 인증기관·개인회원 무료
        The radiation field generated in the primary cooling system of a nuclear power plant tends to increase in intensity as radionuclides bind to the oxide film on the internal surface of the primary system, which is operated at high temperature and pressure, and as the number of years of operation increases. Therefore, decontamination of the primary cooling system to reduce worker exposure and prevent the spread of contamination during maintenance and decommissioning of nuclear power plants uses the principle of simultaneous elution of radionuclides when the corrosion oxide film dissolves. In general, a multi-stage chemical decontamination process is applied, taking into account the spinel structure of the corrosion oxide film formed on the surface of the primary cooling system, i.e. an oxidative decontamination step is applied first, followed by a reductive decontamination step, which is repeated several times to reach the desired decontamination goal. Currently, permanganic acid is commonly used in oxidative decontamination processes to remove Cr from corrosion oxide films. In the reductive decontamination step to remove iron and nickel, organic acids such as oxalic acid are commonly used. However, organic acids are not suitable for the final radioactive waste form. A number of multi-stage chemical decontamination technologies for primary cooling systems have been developed and commercialized, including NP-CITROX, AP/NP-CANDECON, CANDERM, AP/NP-LOMI and HP/CORD-UV. Among these, HP/CORDUV is currently the most actively applied primary cooling system chemical desalination process in the world. In this study, KAERI has developed a new chemical decontamination technology that does not contain organic chemical decontamination agents, with a focus on securing an original technology for reducing the amount of decontamination waste while having equivalent or better decontamination performance than overseas commercial technologies, and compared it with the inorganic chemical agent-based HyBRID (Hydrazine Based Reductive Metal Ion Decontamination) chemical decontamination technology.
        8.
        2023.11 구독 인증기관·개인회원 무료
        Safe management of spent nuclear fuel (SNF) is a key issue to determine sustainability of current light water reactor (LWR) fleet. However, none of the countries are actually conducting permanent disposal of SNFs yet. Instead, most countries are pursuing interim storage of spent nuclear fuels in dry cask storage system (DCSS). These dry casks are usually made of stainlesssteels for resistibility against cracking and corrosion, which can be occurred over a long-term storage period. Nevertheless, some corrosion called Chloride-Induced Stress Corrosion Cracking (CISCC) can arise in certain conditions, exacerbating the lifetime of dry casks. CISCC can occur if the three conditions are satisfied simultaneously: (i) residual tensile stress, (ii) material sensitization, and (iii) chloride-rich environment. A residual tensile stress is developed by the two processes. One is the bending process of stainless-steel plates into a cylindrical shape, and the other is the welding process, which can incur solidification-induced stress. These stresses provide a driving force of pit-to-crack transition. Around the fusion weld areas, chromium is precipitated at the grain boundary as a carbide form while it depletes chromium around it, leading to material susceptible to pitting corrosion. It is called sensitization. Finally, coastal regions, where nuclear power plants usually operate, tend to have a higher relative humidity and more chloride concentration compared to inland areas. This high humidity and chloride ion concentration initiate pitting corrosion on the surface of stainless-steels. To prevent initiation of CISCC, at least one of the three conditions should be removed. For this, several surface engineering techniques are under investigation. One of the most promising approaches is surface peening method, which is the process that impacts the surface of materials with media (e.g., small pins, balls, laser pulse). By this impact, plastic deformation on the surface occurs with compressive stress that counteracts with pre-existing residual tensile stress, so this approach can prevent pit-to-crack transition of stainless-steels. Also, cold spray deposition can prevent CISCC. Cold spray deposition is a method of spraying fine metal powder to a substrate by accelerating them to supersonic velocity with propellant gas. As a result, a thin coating composed of the feedstock powders can protect the substrate from outer corrosive environments. In addition, the impact of the feedstock powder on the substrate during the process provides compressive stress, similar to the peening method.
        9.
        2023.11 구독 인증기관·개인회원 무료
        Any type of nuclear arms control or disarmament agreement requires some form of verification measure. Existing nuclear arms control treaties drew upon previous agreements such as the INF treaty, START, and IAEA nuclear safeguards inspections. However, previous treaties focused on limiting specific types of nuclear weapons and their delivery vehicles or reducing the total number of nuclear weapons rather than eliminating the nuclear enterprise as a whole. A potential nuclear disarmament verification treaty or agreement will depend on the geopolitical environment of the time as well as the national policies and priorities of each signatory state. Although research on the gradual reduction and eventual elimination of nuclear weapons is still ongoing, several states have cooperated to conduct experiments, exercises, and simulations on the procedures and technologies required for nuclear disarmament verification. Three of these efforts are the LETTERPRESS simulation conducted by the Quadrilateral Nuclear Verification Partnership (QUAD), NuDiVe Exercise conducted by the International Partnership for Nuclear Disarmament Verification (IPNDV), and the Menzingen experiment organized by the UNIDIR in partnership with the Swiss Armed Forces, Spiez Laboratory, Princeton University’s Program on Science and Global Security, and the Open Nuclear Network. These contain aspects for the development of a potential nuclear disarmament verification. The LETTERPRESS exercise conducted in 2017 tested potential activities and equipment inspectors might utilize in a nuclear weapon facility. The IPNDV NuDiVe exercises conducted in 2021 and 2022 tested the activities and equipment required for the verified dismantlement of a warhead within a dismantlement facility. Finally, the Menzingen experiment conducted in 2023 tested the practical procedures for the verification of a nuclear weapon’s absence at a storage site. This paper will analyze the three cases to offer considerations on the procedures and technologies future nuclear disarmament verification might include.
        10.
        2023.11 구독 인증기관·개인회원 무료
        Emerging technologies are innovative technologies currently under development or in the early stages of introduction. These technologies have the potential to impact a wide range of industries and sectors significantly and may, therefore, be subject to export controls. The list of emerging technologies subject to export controls varies from country to country and constantly changes as new technologies are developed. For example, the U.S., EU, and South Korea have responded to these changes by adding software and technologies related to artificial intelligence and machine learning to their export control lists. Nevertheless, export control of emerging technologies still presents challenges and limitations. The rapid pace of technological advancement makes it difficult for export control regulations to keep up. For export control purposes, international cooperation on information sharing and control methods is necessary for most countries to control similar items. Several new technologies in the nuclear field may be subject to export controls. These technologies include advanced reactors, nuclear fuel cycle technologies, and nuclear waste management technologies. Small modular reactors (SMRs) and fourth-generation reactors are being developed as advanced technologies, and new technologies are being developed to improve the nuclear fuel cycle. There is also active development of technologies for space applications utilizing nuclear reactors, such as the Nuclear Thermal Propulsion System and the Nuclear Electric Propulsion System. As these technologies may include new systems and items not in existing export control, they may pose a proliferation risk or may include software design know-how for advanced materials, it is necessary to consider whether and how they should be subject to export control to prevent nuclear proliferation. Overall, export controls are an essential issue in the emerging technology and nuclear energy sectors. Countries are moving toward strengthening regulations and international cooperation to overcome these challenges and ensure safe technology transfer, and South Korea should actively participate and lead this trend.
        11.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The evaluation of the low-temperature performance of an asphalt mixture is crucial for mitigating transverse thermal cracking and preventing traffic accidents on expressways. Engineers in pavement agencies must identify and verify the pavement sections that require urgent management. In early 2000, the research division of the Korea Expressway Corporation developed a three-dimensional (3D) pavement condition monitoring profiler vehicle (3DPM) and an advanced infographic (AIG) highway pavement management system computer program. Owing to these efforts, the management of the entire expressway network has become more precise, effective, and efficient. However, current 3DPM and AIG technologies focus only on the pavement surface and not on the entire pavement layer. Over the years, along with monitoring, further strengthening and verification of the feasibility of current 3DPM and AIG technologies by performing extensive mechanical tests and data analyses have been recommended. METHODS : First, the pavement section that required urgent care was selected using the 3DPM and AIG approaches. Second, asphalt mixture cores were acquired from the specified section, and a low-temperature fracture test, semi- circular bending (SCB) test, was performed. The mechanical parameters, energy-release rate, and fracture toughness were computed and compared. RESULTS : As expected, the asphalt mixture cores acquired from the specified pavement section ( poor condition – bad section) exhibited negative fracture performances compared to the control section (good section). CONCLUSIONS : The current 3DPM and AIG approaches in KEC can successfully evaluate and analyze selected pavement conditions. However, more extensive experimental studies and mathematical analyses are required to further strengthen and upgrade current pavement analysis approaches.
        4,000원
        12.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        세계적으로 버섯에 대한 소비는 매년 증가하고 있으며 한국에서는 느타리버섯, 양송이버섯, 팽이버섯이 주로 유 통되고 있다. 하지만, 버섯의 재배와 가공 과정에서 미생 물 오염을 예방하기 위한 대안의 부재로 인하여 Listeria monocytogenes와 같은 병원성 미생물의 오염이 검출되고 있으며 버섯에 의한 식중독 및 리콜 사례가 다수 보고되 고 있다. 버섯에서 오염된 미생물을 저감화하는 방법으로 는 화학적 및 물리적 처리, 또는 이들을 결합하여 사용하는 병용처리 방법이 이용되고 있다. 화학적 처리로는 염소 혼 합물, 과산화아세트산, 4차 암모늄이온 화합물이 주로 사용 되고 있으며 오존과 전해수를 이용한 방법도 최근에 개발 되었다. 물리적 처리로는 초음파, 방사선조사, 콜드 플라즈 마 기술이 이용되고 있으며, 병용처리 방법으로는 자외선/ 염소 혼합물, 오존/유기산, 초음파/유기산 등이 연구되었다. 본 리뷰에서는 국내에서 소비되는 버섯의 종류와 그에 대한 미생물 오염도를 조사하고, 버섯에 오염된 미생물을 제 어할 수 있는 기술에 대하여 조사하여, 정리하였다.
        4,000원
        13.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, non-destructive technologies that can be applied to evaluate the integrity of valve materials, safety against internal pressure caused by corrosion, and the blocking function of large-diameter water valves during operation without requiring specimen collection or manpower entering the inside of the valve were tested to assess the reliability of the technologies and their suitability for field application. The results showed that the condition of the graphite structure inside the valve body can be evaluated directly through the optical microscope in the field without specimen collection for large-diameter water butterfly valves, and the depth of corrosion inside the valve body can be determined by array ultrasound and the tensile strength can be measured by instrumented indentation test. The reliability of each of these non-destructive techniques is high, and they can be widely used to evaluate the condition of steel or cast iron pipes that are significantly smaller in thickness than valves. Evaluation of blocking function of the valves with mixed gas showed that it can be detected even when a very low flow rate of mixed gas passes through the disk along with the water flow. Finally, as a result of evaluating the field applicability of non-destructive technologies for three old butterfly valves installed in the US industrial water pipeline, it was found that it is possible to check the material and determine the suitability of large-diameter water valves without taking samples, and to determine the corrosion state and mechanical strength. In addition, it was possible to evaluate safety through the measurement results, and it is judged that the evaluation of the blocking function using mixed gas will help strengthen preventive response in the event of an accident.
        4,800원
        14.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 총설은 탄소중립 및 에너지순환을 실현하기 위한 재생에너지로부터 그린수소 생산 전략 중 하나인 바이오수소 생산 및 정제법에 관해 소개하고자 한다. 바이오수소는 생물질과 미생물과 같은 재생에너지원을 이용하며, 상온 및 상압 등의 마일드한 실험조건에서 작동하여 에너지소비 및 공정비용이 적게 드는 친환경 공정으로 알려져 있다. 하지만, 이러한 바이오 수소를 상업적으로 이용하기 위해서는 해결해야 할 중요한 도전적인 과제가 존재한다. 특히, 바이오수소는 생물반응기내의 복합한 화학반응으로 합성되어, 낮은 수소생산 속도 및 반응기내 다양한 혼합물이 존재하여, 바이오수소 고순도화를 위해서 연속공정 형태의 분리 및 정제 기술이 반드시 필요하다. 이를 위해, 저온 증류법, 압력 흡착법, 분리막법 등을 비롯한 다양한 분리 및 정제 기술이 고순도 바이오수소를 얻기 위해 제안되었다. 본 총설에서는 바이오수소 생산 및 정제 연계화를 위한 비 다공성 고분자 분리막의 가능성에 대해 소개하고자 한다.
        4,500원
        15.
        2023.07 구독 인증기관·개인회원 무료
        In the hospitality and tourism sectors, service robots have become increasingly adopted by companies to facilitate frontline service to reduce human labor, improve efficiency and provide better customer experience. In addition, the COVID-19 pandemic has intensified consumers’ demand for service robots to reduce human contact. To better understand the impact of service robots in the service sector, researchers have been examining user behavior of different technologies. While prior empirical studies have mainly focused on utilitarian-based acceptance models, other perspectives, such as the interpersonal relations, have been largely overlooked. With the ubiquitous of social media, people become connected but alone, leading to negative effects on interpersonal relations.
        16.
        2023.07 구독 인증기관·개인회원 무료
        This research proposes the application of new technologies in tourism advertising to resonate with and respond to unconscious desires that are embodied within consumers. The ethnographic research first questions how consumers form their desires regarding tourism and illustrates that advertising does not create desire; consumer desires for travel, often embodied, exist before consumers are exposed to advertising messages. Such desires derive from past experiences, imagination and sensorial imageries learned from stimuli. Consumers react positively to multi-sensorial, empathetic messages. AI technologies, such as the convolutional neural network algorithm, can be used to apply traditional cultural symbols in art design (Lin 2021). Virtual mirror-based learning technology mirrors back to individuals their social network, identifying their most important contacts, influencers, and communication bottlenecks. The research aims to connect existing and future new technologies that provide the “posthuman mystic,” to offer consumers to experience a new level of their own being, giving room for different kinds of human relations--friendship, connection, and novelty --through one’s avatars (Bolger 2021) and to construct a “decentered, highly relational mode of reality giving agency to everyone, not only to all other humans, but to natural and technological subjects as well” (Delio 2020, p. 115). Such virtual world, with an example like the Metaverse, is “a combination of contextualization and wholemaking from the standpoint of posthumanism and mysticism” (Bolger 2021, p.768). The research then deciphers consumers’ positive reactions to websites that resonate with imagination sensorial desires, past experiences, desired activities and “LIVE” desires. Based on the findings, the research summarizes cross-disciplinary research of tourism advertising and new technologies 4.0 and conceptually illustrates how the applications of new technologies 4.0 may assist with the understanding of consumers’ multi-sensorial desires, imagination, and memories to design empathetic advertising messages. As such, advertisers may be in systematic dialogues with consumers and create multi-sensorial messages that resonate consumer desires.
        17.
        2023.07 구독 인증기관·개인회원 무료
        How do people perceive new technology-embedded machines? Based on the previous literature on mind perception, this research proposes how people perceive the mind of machines including artificial intelligence (AI), robots, recommendation systems, chatbots, and self-service technologies (SSTs).
        18.
        2023.07 구독 인증기관·개인회원 무료
        As digital technology becomes more prevalent in today’s business environment and interest in digital trust rises, restaurants need to identify whether and how their mobile apps enhance the customer experience, and what features of the apps can strengthen customers’ attachment to them. However, few studies have examined the role of restaurant mobile apps as a catalyst for building customer loyalty. Considering restaurant mobile apps as a means to build a trustworthy relationship between customers and restaurants, this study develops and validates a research framework to measure digital trust between restaurants and customers through restaurant mobile apps. Specifically, due to the lack of measurement constructs for digital trust, a reliable and valid set of measurements that can explain digital trust in relation to restaurant mobile apps is developed and the effects of mobile apps’ digital trust on customers’ trust in a restaurant brand, overall experience, and their continued use intention are assessed.
        19.
        2023.05 구독 인증기관·개인회원 무료
        Molten Salt Reactor (MSR) is one of Generation-IV nuclear reactors that uses molten salts as a fuel and coolant in liquid forms at high temperatures. The advantages of MSR, such as safety, economic feasibility, and scalability, are attributed from the fact that the molten salt fuel in a liquid state is chemically stable and has excellent thermo-physical properties. MSR combines the fuel and coolant by dissolving the actinides (U, Th, TRU, etc.) in the molten salt coolant, eliminating the possibility of a core meltdown accident due to loss of coolant (LOCA). Even if the molten salt fuel leaks, the radioactive fission products dissolved in the molten salt will solidify with the fuel salt at room temperature, preventing potential leakage to the outside. MSR was first demonstrated at ORNL starting with the Aircraft Reactor Experiment (ARE) in 1954 and was extended to the 7.4 MWth MSRE developed in 1964 and operated for 5 years. Recently, various start-ups, including TerraPower, Terrestrial Energy, Moltex Energy, and Seaborg, have been conducting research and development on various types of MSR, particularly focusing on its inherent safety and simplicity. While in the past, fluoride-based molten salt fuels were used for thermal neutron reactors, recently, a chlorine-based molten salt fuel with a relatively high solubility for actinides and advantageous for the transmutation of spent nuclear fuel and online reprocessing has been developing for fast neutron spectrum MSRs. This paper describes the development status of the process and equipment for producing highpurity UCl3, a fuel material for the chlorine-based molten salt fuel, and the development status of the gas fission product capturing technologies to remove the gaseous fission products generated during MSR operation. In addition, the results of the corrosion property evaluation of structural materials using a natural circulation molten salt loop will also be included.
        20.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        신기술에 대한 투자규모가 크게 증가하고 있고, 과학기술이 사회 전반적으로 대규모·복합적인 영향을 미치고 있다. 정부는 새로운 신기술이 사회에 수용되려면 과학기술에 대한 국민적 관심이 큰 만큼 기술이 국민과 사회에 미치는 영향에 대해서 잘 평가할 의무가 있다. 이를 위한 사회적 합의를 이루기 위해 기술영향평가를 한다. 이를 위한 방법에 대한 연구가 50년째 지속되고 있고, 다양한 학술연구와 수많은 신기술 대응 정책을 통해 논의 된 이후 시대적 변화와 흐름이 있었기에 글로벌 학계와 정책에서 신기술의 미래사회 영향력에 대한 다각적 분석 등이 강조되고 있다. 본 연구는 선진국의 기술영향평가 창안 방식과 우리나라에서 발전된 방식이 다름에도 불구 하고 그동안 신기술 기술영향평가 고려되어야 하는 예측요소와 단계 등 연구 변화에 주목하였다. 연구결과 인식도에 대해 기술 이해도, 전문성, 성별특성 세 개 요소를 도출하고, 기존 요소에 추가해 신기술 예측요소로 제안하였다. 연구의 결과는 우리나라 과학기술기본법에 의거 개선된 기술영향평가를 실시하는데 있어 학술 및 정책적 뒷받침하는 근거를 제시하였다.
        9,300원
        1 2 3 4 5