검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The objectives of this paper are: (1) to conduct the thermal analyses of the disposal cell using COMSOL Multiphysics; (2) to determine whether the design of the disposal cell satisfies the thermal design requirement; and (3) to evaluate the effect of design modifications on the temperature of the disposal cell. Specifically, the analysis incorporated a heterogeneous model of 236 fuel rod heat sources of spent nuclear fuel (SNF) to improve the reality of the modeling. In the reference case, the design, featuring 8 m between deposition holes and 30 m between deposition tunnels for 40 years of the SNF cooling time, did not meet the design requirement. For the first modified case, the designs with 9 m and 10 m between the deposition holes for the cooling time of 40 years and five spacings for 50 and 60 years were found to meet the requirement. For the second modified case, the designs with 35 m and 40 m between the deposition tunnels for 40 years, 25 m to 40 m for 50 years and five spacings for 60 years also met the requirement. This study contributes to the advancement of the thermal analysis technique of a disposal cell.
        4,500원
        2.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There is an ever growing interest in the development of biochar from a large variety of agrowastes. Herein, the main objective is the conversion of pomegranate peel powder biochar and its post-functionalization by phosphoric acid treatment, followed by arylation organic reaction. The latter was conducted using in situ-generated diazonium salts of 4-aminobenzoic acid ( H2N-C6H4-COOH), sulfanilic acid ( H2N-C6H4-SO3H) and Azure A dye. The effect of diazonium nature and concentration on the arylation process was monitored using thermal gravimetric analysis (TGA) and Raman spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). SEM pictures showed micrometer-sized biochar particles with tubular structure having about 10–20 μm-wide channels. SEM studies have shown that arylation did not affect the morphology upon arylation. The porous structure did not collapse and withstood the arylation organic reaction in acid medium did not collapse upon arylation. TGA and Raman indicated gradual changes in the arylation of biochar at initial concentrations 10– 5, 10– 4 and 10– 3 mol L− 1 of 4-aminobenzoic acid. The detailed Raman spectra peak fittings indicate that the D/G peak intensity ratio leveled off at 3.35 for 4-aminobenzoic acid initial concentration of 10– 4 mol L− 1, and no more change was observed, even at higher aryl group mass loading. This is in line with formation of oligoaryl grafts rather than the grafting of new aryl groups directly to the biochar surface. Interestingly, Azure A diazonium salt induced much lower extent of surface modification, likely due to steric hindrance. To the very best of our knowledge, this is the first report on diazonium modification of agrowaste-derived biochar and opens new avenues for arylated biochar and its applications.
        4,200원
        3.
        2022.10 구독 인증기관·개인회원 무료
        Recently, the deep geological disposal system isolating a spent nuclear fuel (SNF) is considered a disposal method of high-level radioactive waste for the safety of humans or the natural environment. The one of important requirements for maintaining the thermal stability of these systems is that the temperature of the buffer does not exceed 100°C even though the decay heat is emitted from highlevel radioactive wastes loaded in the disposal container. In 2007, a deep geological disposal system based on the Swedish disposal concept was developed for the SNF in Korea. To respond to the development process, the thermal stability of the deep geological disposal system developed for the disposal of domestic pressurized light water reactor (PWR) SNFs with discharged burn-up of 55 GWD/MTU was evaluated in 2019. The thing is that the recent fuel activity is pursuing to operate further high burn-up fuel conditions, and it leads to emergency core cooling system (ECCS) revision for extending the license for up to 60 or more than 60 GWD/MTU in the world. In this regard, this study evaluates numerically the thermal stability of the deep geological disposal system for the high burn-up PWR SNF having large decay heat compared to previous conditions for two different length disposal containers classified according to the length of PWR SNFs discharged from domestic nuclear power plants. A finite element analysis using a computational program was used to evaluate the thermal design requirements. Results show that both types of disposal containers would increase the temperature which reduces or fails to meet the safety margin of the disposal system. This study suggests that the design of the previous disposal system is needed to be further developed for the high burn-up PWR SNF which would be used in future nuclear power plant systems.
        4.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        With respect to spent nuclear fuels, disposal containers and bentonite buffer blocks in deep geological disposal systems are the primary engineered barrier elements that are required to isolate radioactive toxicity for a long period of time and delay the leakage of radio nuclides such that they do not affect human and natural environments. Therefore, the thermal stability of the bentonite buffer and structural integrity of the disposal container are essential factors for maintaining the safety of a deep geological disposal system. The most important requirement in the design of such a system involves ensuring that the temperature of the buffer does not exceed 100℃ because of the decay heat emitted from high-level wastes loaded in the disposal container. In addition, the disposal containers should maintain structural integrity under loads, such as hydraulic pressure, at an underground depth of 500 m and swelling pressure of the bentonite buffer. In this study, we analyzed the thermal stability and structural integrity in a deep geological disposal environment of the improved deep geological disposal systems for domestic light-water and heavy-water reactor types of spent nuclear fuels, which were considered to be subject to direct disposal. The results of the thermal stability and structural integrity assessments indicated that the improved disposal systems for each type of spent nuclear fuel satisfied the temperature limit requirement (< 100℃) of the disposal system, and the disposal containers were observed to maintain their integrity with a safety ratio of 2.0 or higher in the environment of deep disposal.
        4,900원
        5.
        2006.04 구독 인증기관·개인회원 무료
        Powder injection molding (PIM) is a suitable technology for the fabrication of complex shape titanium and its alloys, and has a great potential in many applications. This paper dealt with the injection molding of hydride dehydrogenization (HDH) titanium powder, spheroidized HDH titanium powder and gas atomized titanium powder. Rheological and thermalgravimetric behaviors were compared between the feedstocks of the three powders, and a tentative application of Ti PIM to eye frame temple and bridge was briefed.
        6.
        1999.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 국내에서 가장 취약할 것으로 예상되는 원자력 발전소에 가압열충격 사고를 유발할 수 있는 주증기관 파단사고를 가정하여 열수력 해석과 파괴역학 해석을 수행하였다. 원전수명관리연구의 일환으로 계통열수력 해석 및 혼합열유동 해석에 의하여 구한 냉각제의 온도와 압력의 이력 및 용기의 재질성분으로부터 용기의 응력확대계수와 파괴인성치를 계산하고 이들을 비교하여 균열의 진전여부를 판단하여 형상계수가 1/6인 표면균열이 견딜 수 있는 최대 기준무연성천이온도를 결정하였다.
        4,000원
        7.
        1997.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TMS(tetramethysilane, Si(CH3)4)를 이용하여 RTCVD(rapid thermal chemical vapor deposition)장치에서 Si(111) 기판 위에 β-SiC(111)를 성장시켰다. 실험변수로는 반응온도, TMS유량, 반응시간, H2유량을 변화시켰으며, XRD, IR, SEM, RBS, TEM등을 이용하여 성장된 박막을 분석하였다. 성장된 박막은 crystallized Si, C또한 Si-H, C-H결합은 관찰할 수 없었으나 다결정이었다. TMS의 유량이 증가함에 따라, 성장온도가 감소함에 따라서 미려한 박막을 성장시킬 수 있었으며, 반응의 활성화에너지는 20kcal/molㆍK이었다.
        4,000원