검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 110

        81.
        2019.02 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study is to quantitatively analyze the effects of a restoration project on the decrease in the temperature in the surrounding areas. The thermal environment characteristics of the investigation area were analyzed using the meteorological data from the Busanjin Automatic Weather System which is closest to the target area. The terrain data of the modeling domain was constructed using a digital map and the urban spatial information data, and the numerical simulation of the meteorological changes before and after the restoration of the stream was performed using the Envi-met model. The average temperature of the target area in 2016 was 15.2℃ and was higher than that of the suburbs. The monthly mean temperature difference was the highest at 1.1℃ in November and the lowest in June, indicating that the temperatures in the urban areas were high in spring and winter. From the Envi-met modeling results, reductions in temperature due to stream restoration were up to 1.7℃ in winter, and decreased to 3.5℃ in summer. The effect of temperature reduction was seen in the entire region where streams are being restored.
        82.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        The Stockholm Convention, which was adopted in Sweden in 2001 to protect human health and the environment, includes regulations for Persistent Organic Pollutant Rotors such as toxic and bioaccumulatives. Currently, there are 28 types of materials. This prohibits and limits the production, use, and manufacture of products. Korea is a member of the Convention, and it is necessary to prepare management and treatment plans to address the POP trends. Thus, we experimentally investigate whether the environmentally stable incineration is achieved when the sample is thermally treated using the Lab-scale (1 kg/hr). The target samples is pesticides in liquid phase and solid phase. In this study, organic chlorinated pesticides and their thermal characteristics were analyzed. We calculated the theoretical air volume based on the element analysis results. Because the interior of the reactor is small, more than 10 times of the air ratio was injected. The retention time was set to at least 4 seconds using a margin. The incineration temperature was 850℃ and 1100℃. Thus, we experimentally investigated whether the environmentally stable incineration was achieved when the sample was thermally treated using the Lab-scale (1 kg/hr). We analyzed five types of exhaust gas; the 02 concentration was high, but the CO amount decreased. Complete combustion is difficult because of the small size of the furnace due to the nature of Lab-scale. The organic chlorine-containing pesticide had an average decomposition rate of 99.9935%. Considering the decomposition rates of organic chlorine-containing pesticide in this study, the incineration treatment at over 2 ton/hour, which is typical for a conventional incinerator, is possible. Considering the occurrence of dioxins and unintentional persistent organic pollutants, it can operate at more than 1,100℃.
        83.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        Agricultural or rural landscape provides various ecosystem services. However, the ecosystem services function is declining due to various environmental problems such as climate change, land use change, stream intensification, non-point pollution and garbage. The A1B scenario predicts that the mean air temperature of South Korea will rise 3.8℃ degrees celsius in 2100. Agricultural sector is very vulnerable to climate change, so it must be thoroughly predicted and managed. In Korea, the facility horticulture complex is 54,051ha in 2016 and is the 3rd largest in the world(MAFRA, 2014). Facilities of horticultural complexes are reported to cause problems such as groundwater decrease, vegetation and insects diversity reduction, landscapes damage and garbage increase, compared with the existing land use paddy fields. Heat island phenomenon associated with climate change is also accelerated by the high heat absorption of horticultural sites. Therefore, we analyzed the heat island phenomenon occurring in the facility of horticultural complex in Korea. As an improvement measurement, I examined how much air temperature is reduced by putting the channel and the open space. In the case of the Buyeo area, the Computational Fluid Dynamics (CFD) simulation was analyzed for the average summer temperature distribution in the current land use mode at 38.9℃. As an improvement measurement, CFD simulation after 10% of 6m water channel was found to have an effect of lowering the summer temperature of about 2.7℃ compared with the present average of 36.2℃. In addition, CFD simulations after analyzing 10% of the open space were analyzed at 34.7℃, which is 4.2℃ lower than the present. For the Jinju area, CFD simulations were analyzed for the average temperature of summer at 37.8℃ in the present land use pattern. As an improvement measure, CFD simulations after 10% of 6m water channel were found to have an effect of lowering the summer temperature of about 2.6℃ compared to the current average of 35.2℃. In addition, CFD simulations after analyzing 10% of the open space were analyzed at 33.9℃, which is 3.9℃ lower than the present. It can be said that the effect of summer temperature drop in open space and waterway has been proven. The results of this study are expected to be reflected in sustainable agriculture land use and used as basic data for government - level policy in land use planning for climate change.
        84.
        2018.05 서비스 종료(열람 제한)
        다양한 산업 활동에 따라 배출되는 폐기물 중 낮은 경제성 때문에 재활용되지 못하고 매립되는 폐기물이 증가하고 있다. 폐자원의 재활용 방향성을 확대하고 미처리폐기물의 매립 제로화를 추진하여 2035년 까지 폐기물 매립처분 비율을 1.0%까지 감소시키고자 목표를 설정하였다. 국내 전체 폐기물의 매립처분 비율은 2015년도 기준 9.2%(38,308 ton/day)이다. 이중 사업장배출시설계폐기물이 약 62%(23,577 ton/day)로 가장 높은 비율을 차지하고 있다. 무기성폐기물 중 열적처리 잔재물류의 매립량은 10,637 ton/day로 사업장배출시설계폐기물 매립량의 45.1%을 차지하고 있는 것으로 조사되었다. 본 연구에서는 강열감량, 총유기탄소, XRF 등의 분석을 통하여 무기성폐기물의 물질 특성을 나타내었다. 사업장 제품 특성 및 배출 폐기물의 성상에 따라 성분 함량이 상이함을 확인할 수 있었다. XRF분석결과, 광재는 Fe 성분 비율이 2.3~69.9%로 나타났으며 대부분 Fe로 형성되어 있음을 확인할 수 있었다. 분진의 경우 Mg, Al, Si, Ca 등 다양한 형태의 원소들이 함유되어 있었으며 Ca 성분이 0.5~57.5%로 높게 나타났고 Si 성분이 1.3~55.6%로 나타났다. 연소재의 경우 대부분 Si, Ca 성분으로 이루어져 있었으며, Si는 3.6~57.1%, Ca는 4.1~55.9% 함유되어 있음을 확인할 수 있었다.
        85.
        2017.05 서비스 종료(열람 제한)
        최근 국제수은협약(Minamata Convention on Mercury)의 채택에 합의함에 따라 회원국들은 수은사용 및 배출 저감에 대한 관리방안을 준비하고 있다. 국내 산업시설에서 발생되는 지정폐기물은 시료특성에 따라 적정처리하며, 일부는 매립하여 최종 처분한다. 용출시험기준을 만족하더라도 매립된 폐기물에 불안정한 형태로 함유된 수은화합물은 최종 매립 후 환경으로 유출될 수 있다. 따라서, 폐기물 및 처리 후 발생하는 부산물을 대상으로 수은에 대한 안정도평가가 필요하다. 본 연구에서는 UV램프 폐형광체를 대상으로 500℃ 및 600℃에서 열적처리를 진행하였다. 발생하는 잔류물을 대상으로 총 5단계로 구성된 단계별 용출법(Sequential Extraction Procedure, SEP)을 적용하여 시료에 함유된 수은 화합물의 안정도를 평가하고자 하였다. 각 단계별 용매로써 증류수(1단계), 0.1M CH3COOH+0.01M HCl(2단계), 1M KOH(3단계), 2M HNO3(4단계) 및 Aqua regia(5단계)를 사용하였다. 1~3단계에서 용출되는 수은화합물은 안정도가 약해 환경으로 쉽게 유출되는 것으로 알려져 있다. 4~5단계의 것은 강한 화학적 결합을 이루고 있으므로 이동성이 낮아 안정한 물질로 알려져 있다. 1~3단계를 S1, 4~5단계를 S2로 분류하여 수은 화합물의 안정도를 평가하였다. 처리 전 시료의 수은 함량은 108.7 mg-Hg/kg이며, S1단계에서 62%, S2단계에서 37.5%가 용출되었다. 500℃, 600℃ 열적처리 후 발생된 잔류물의 수은 함유 농도는 각각 17.3 mg-Hg/kg, 11.6 mg-Hg/kg으로 분석되었다. S1단계에서 각각 25%, 20%가 용출되었으며, S2단계에는 각각 75%, 80% 용출되었다. 열적처리 과정에서 안정도가 약한 수은화합물이 제거되었다. 처리 후 잔류물에 함유된 안정한 형태의 수은화합물의 처분 방안에 대한 추가적인 연구가 필요하다.
        86.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        This study evaluates the adsorption properties of Sr ions in an aqueous solution of the synthetic zeolite (Z-Y1) prepared using coal fly ash generated from a thermal power plant. In order to investigate the adsorption characteristics, the effects of various parameters such as the initial concentrations of Sr ion, contact time, and solution pH were investigated in a batch mode. The Langmuir and Redlich-Peterson model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacity of Sr ions, as determined the Langmuir model, was 181.68 mg/g. It was found that by varying the Sr ion concentration, pH, and temperature, the pseudo-second-order kinetic model describes the adsorption kinetics of the Sr ion better than the pseudo-first-order kinetic model. The calculated thermodynamic parameters of ΔH0 and ΔG0 showed that the adsorption of Sr ions on Z-Y1 was occurred through a spontaneous and an endothermic reaction. We found that the adsorption of Sr ions by Z-Y1 was more affected by pH than by temperature and Sr ion concentration.
        87.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        This study investigates leaching and thermal treatment characteristics of mercury in waste phosphor powder from UV lamp for industrial use. Waste phosphor powder contaminated with mercury compounds requires proper treatment for final disposal. A sequential extraction procedure was conducted in order to estimate the stability of mercury compounds in waste phosphor powder. The fraction of mercury compounds leached in initial steps by ion-exchangeable and low acidic solutions was 62%, which would be unstable. Finally 36% of mercury compounds was left as a strongly stable form before last step of acid digestion by aqua regia. Mercury was decomposed rapidly during initial period in thermal treatment. However, the decomposition rate reached in steady later. Correlation of mercury content in residues with concentration of leaching extract was attempted in order to set a thermal treatment condition. When mercury content in residue of phosphor powder could be lowed up to about 13 mg-Hg/kg by thermally with satisfying the Korean leaching standard limit of 0.005 mg-Hg/L.
        88.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        A parametric study has been made numerically on the thermal incineration of CF4, one of the perfluorocarbons (PFCs) emerging recently as issues of public concern in a practical CDM incinerator developed for the thermal destruction of HFC-23. In doing this, a turbulent combustion model of the fast combustion approximation is reasonably assumed using the typical auxiliary fuel, CH4, for the supply of the heat, and the necessary species of hydrogen and oxygen atom. In addition, the performance of the stoichiometric gas mixture of hydrogen and oxygen (H2+ 1/2 O2) was examined as a special auxiliary fuel not only in order to enhance the thermal destruction efficiency but also the reduction of the CO2 emission by the elimination or the reduction of the auxiliary fuel CH4 in this incineration process. The calculation results showed that the thermal destruction efficiency of CF4 using methane as an auxiliary fuel increases with the amount of methane. However, the thermal destruction efficiency did not reach a satisfactory level (i.e., < 95%), even with the application of a CH4 amount more than four times of the stoichiometric value. This is explained by the improper turbulent mixing effect between CH4, CF4 and air especially in a large scale practical incinerator employed for the destruction of HFC-23. For the case of H2+ 1/2 O2 as the auxiliary fuel, however, the thermal destruction efficiency, surprisingly, reached almost 100%, which shows the high potential of the thermal destruction of CF4 by the use of HHO gas. Further, a detailed evaluation for the effect of the turbulent mixing on the thermal destruction of CF4 will be quite necessary, considering operating conditions together with the type of auxiliary fuels.
        89.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.
        90.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        This study provides an experimental result of thermal mercury reduction and condensation characteristics for inventing a mercury recovery technology from the waste sludge which contains high concentration of mercury. Thermal treatment was conducted in the temperature range of up to 900oC from 600oC with different residence time using a waste sludge from domestic industrial facility. Properties of powder material condensed after thermal treatment were analyzed to assess the effectiveness of thermal processing. Leaching characteristics of bottom ash and condensed powder material were analyzed by Korean Standard Leaching Test method (KSLT). Cold vapor atomic absorption spectroscopy (CVAAS) Hg analyzer was used for the analysis of mercury content in solid and liquid samples. We found that mercury contents was concentrated compared with waste sludge. However, the mercury concentration of leached solution from the condensed powder material was very low. The chemical characteristics of condensed powder material was estimated using experimental analysis and literature survey. In order to recover purified elemental mercury, the further researches of refining experiments would be required.
        91.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        Converter slag is discharged as by-product from steel making process. Its chemical composition is similar to that of blast furnace slag. Therefore its recyclability is high. But actually it was not widely recycled relatively. We studied to prepare insulating brick with it for enhancing the recyclability. We discussed mixing ratio of melting slag and converter slag and also additional amounts of Al-dross and NaOH as affecting factors. According to our results, 0.195 W/mK of thermal conductivity and 3.02 MPa of compressive strength were obtained at the following condition mixing ratio 60 : 40, aluminum dross 1.5wt%, NaOH 5.6wt%. It seemed that the thermal conductivity of prepared brick was decreased with increasing amount of Al-dross and NaOH. It is satisfied with the standard of insulating fire bricks (KS L3301).
        93.
        2014.10 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        수확 후 매실의 미생물학적 안전성 확보를 위해 0.5% citric acid와 0.1% Tween 20 단일 및 병합 처리 후 4±1˚C에서 7일간 저장하면서 미생물 수 및 품질 변화를 조사하였다. Citric acid와 Tween 20 병합 처리 후 총 호기성 세균과 효모 및 곰팡이 수는 대조구와 비교하여 각각 2.06, 2.22 log CFU/g으로 가장 높은 감소 효과를 보였으며, 이러한 효과는 저장 7일 동안 유지되었다. 매실의 유기산 함량을 분석한 결과, malic acid, citric acid, oxalic acid의 순서로 높은 함량을 나타냈고, 모든 처리구에서 유의적인 차이가 없었으며, 저장 중 색도 역시 큰 차이를 보이지 않았다. 또한 매실의 저장성 증진 및 다양한 매실 가공품 제조를 위한 기초연구로써 탈수제를 이용한 건조 후 건조 매실의 품질 변화를 열품건조와 비교, 분석하였다. 탈수제 처리 건조가 열풍건조에 비해 높은 복원율을 나타냈고, 총 페놀 및 플라보노이드 함량 역시 열풍건조 보다 많았으며, 대조구와 유사한 함량을 유지하였다. 또한 건조 매실의 색도에 있어서도 탈수제 처리가 부정적 영향을 끼치지 않는 것으로 나타났다. 따라서 본 연구결과, 수확 후 매실에 citric acid와 Tween 20 병합 처리가 미생물학적 안전성을 확보함과 동시에 품질 변화를 일으키지 않는 효과적인 가공 전처리 기술이라고 생각되며, 탈수제 처리가 건조 매실의 품질을 높게 유지하며 저장성을 높일 수 있는 효율적인 건조 방법이라고 판단된다.
        94.
        2014.07 KCI 등재 서비스 종료(열람 제한)
        The amount of sewage treatment has been increasing year by year as the small and medium sized cities grow in Korea. Besides, the treatment of sludge has been more significant owing to the total ban on disposal of organic sludge in a landfill since April 2004 and ocean dumping of organic waste since December 2013. In this research, we studied the drying characteristics of sewage sludge by indirect heating device using thermal oil. The indirect heating device operated in a batch for 16 hours according to the variation of drying temperature between 100 and 200oC and the initial input weight of each type of sewage sludge was equally 60 kg. As a result, the moisture content in raw, excess and mixed sludge became lower than 10% under 14 hours at 160oC. The average water loss rate of raw, excess and mixed sludge is 0.436 g-wet/ min, 0.362 g-wet/min and 0.367 g-wet/min respectively at this stage. Therefore, the raw sludge can be dried well, using indirect heating device in sewage treatment plant. Also, it is better to dry raw sludge or excess sludge alone than mixed sludge because each type of sludge does not make synergistic effect but counter effect when they are together.
        95.
        2014.07 KCI 등재 서비스 종료(열람 제한)
        Since the volume based tipping system was adopted for municipal solid wastes in Korea, the system has been well implied with the positive participation of households. Therefor local governments have started to apply the system to food wastes as well in recent years and each household has put an effort to reduce the generation of food wastes consequently. Another big movement on the management of municipal solid waste has been made, which was intending to utilize wastes to energy resources by converting to solid refuse fuel (SRF). In the meantime the conversion of biomass to energy became an issue to argument national renewable energy. Such motivation made an attempt to utilize fruit husks as SRFs since they has been used to dispose of as food wastes with the payment of tipping fee by households. Thus, in this study, five fruits (mandarine, apple, pear, sweet persimmon and grape) of 6 main consuming fruits in Korea were chosen as tested materials to check out any potentials of biomass SRFs. The basic characteristics of 5 fruit husks after drying naturally were analyzed. Heating values, proximate analysis results were reported and thermo-gravimetric tests were made for suggesting them to combustible wastes or bio-SRFs. The higher heating values of all fruit husks with natural drying showed above 3,000 kcal/kg which is the criterium of SRF and the lower heating values were less than SRF standard due to higher content of moisture. Proximate analysis and thermo-gravimetric data were similar to other biomass fuels like wood and municipal solid waste. It is concluded that such fruit husks could be used as SRFs by adopting an effective drying method in advance.
        96.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        This study provides a result of thermal mercury reduction for inventing a mercury recovery technology from the sludgewhich contains high concentration of mercury. Physical, chemical and thermal properties of the sludge were analyzed andmercury degradation at elevated temperatures was investigated to find out the optimum temperature range for thermalrecovery of mercury from the sludge generated from an industrial facility, which contained high concentration of mercury.The study was carried out in the temperature range of up to 650oC from 200oC, and 500~710µm particle size of wastesludge samples were selected from such industries. As primary thermal tests the sludge was heated up to observe weightdegradation at a continuous weight measurable thermogravimetric analyzer and a muffle furnace and the degradationcurves from both devices were found to be well matched. Mercury conversion to gaseous form was investigated fromthe analyzed data of mercury concentrations sampled every 25oC from a muffle furnace. Cold vapor atomic absorptionspectroscopy (CVAAS) Hg analyzer was used for the analysis of mercury content in solid and liquid samples. Most ofmercury was degraded and released as gas phase at the temperature range from 300oC to 550oC, which could be theoptimum temperature of mercury recovery by thermal method for the sludge containing high concentration of mercury.Based on these thermal mercury reduction studies, degradation kinetics study of mercury was conducted to provide thereaction kinetics data for further reactor design to recover mercury using a thermal method.
        97.
        2014.04 서비스 종료(열람 제한)
        The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research structural insulation concrete what improved insulation performance using Micro Form Admixture.
        98.
        2013.10 서비스 종료(열람 제한)
        The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research structural insulation concrete what improved insulation performance using micro form admixture and lightweight aggregate.
        99.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        This study analyzed concentration and characteristics of hazardous substances in treatment of leachate from carcass burial areas by using high temperature thermal desorption (HTTD). Concentrations of pollutants emitted from HTTD treatment of leachate contaminated soil of carcass burial sites satisfied the emission standards for 11 pollutants from domestic waste incineration facilities. Dioxin concentration was 0.0060 ng I-TEQ/Sm3 and 0.0061 (0.0055-0.0070) ng ITEQ/ Sm3 in the normal operation condition and the experimental condition, respectively, which are much lower than the MSWI Standard of 0.1ng I-TEQ/Sm3. As a result, it was considered that leachate from carcass burial areas could be treated by high temperature thermal desorption (HTTD).
        100.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        Diverse studies are being conducted on sewage sludge treatment and recycling methods, but the demand for a lowcost treatment technology is high because the sewage sludge has an 80% or higher water content and a high energy consumption cost. We want to apply the thermal hydrolysis reaction that consumes a small amount of energy. The purpose of this study is to quantify the thermal conductivity of sewage sludge according to reaction temperature for optimal design of thermal hydrolysis reactor. We quantified continuously the thermal conductivity of dewatered sludge according to the reaction temperature. As the reation temperature increased, the dewatered sludge is thermally solubilized under a high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bond water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry of a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.6 times lower than that of the water at 293 K, but at 470 K and above, became 0.708 W/m·K, which is about 4% lower than that of the water.
        1 2 3 4 5