검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-temperature oxidation of a Ni-based superalloy was analyzed with samples taken from gas turbine blades, where the samples were heat-treated and thermally exposed. The effect of Cr/Ti/Al elements in the alloy on high temperature oxidation was investigated using an optical microscope, SEM/EDS, and TEM. A high-Cr/high-Ti oxide layer was formed on the blade surface under the heat-treated state considered to be the initial stage of high-temperature oxidation. In addition, a PFZ (γ’ precipitate free zone) accompanied by Cr carbide of Cr23C6 and high Cr-Co phase as a kind of TCP precipitation was formed under the surface layer. Pits of several μm depth containing high-Al content oxide was observed at the boundary between the oxide layer and PFZ. However, high temperature oxidation formed on the thermally exposed blade surface consisted of the following steps: ① Ti-oxide formation in the center of the oxide layer, ② Cr-oxide formation surrounding the inner oxide layer, and ③ Al-oxide formation in the pits directly under the Cr oxide layer. It is estimated that the Cr content of Ni-based superalloys improves the oxidation resistance of the alloy by forming dense oxide layer, but produced the σ or μ phase of TCP precipitation with the high-Cr component resulting in material brittleness.
        4,000원
        2.
        2018.04 구독 인증기관·개인회원 무료
        Entomopathogenic fungi have been known as promising candidates for biological control of insect pests. Recently, researchers consider the fungal thermotolerance in formulations and field applications. In this study, we investigated the production of thermotolerant Isaria javanica and I.fumosorosea conidia through grain-based solid cultures and exposure to light stress. As results, of the ten grain substrates, Italian millet, rice, perilla seed and sesame, rice, sorghum produced highly thermotolerant conidia in the strains. The two strains were exposed to a light stress and a heat stress. And they showed enhanced thermal stability compared to control, when exposed to 45°C for 2 hours. This work suggests that heat-resistant entomopathogenic fungal conidia can be produced by grain-based solid cultures and exposure to light stress.
        5.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and 500 μm, and those of the bond coat were 100 and 250 μm. FTF tests were performed until 1140 cycles at a surface temperature of 1100 oC for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and 500 μm were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.
        4,000원
        8.
        2000.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        니켈기 주조용 합금 738LC를 816˚C와 982˚C에서 크리프 파단 시험과 열간 노출시험을 통해 온도와 응력 변화에 따른 파단양상, 탄화물과 σ상의 석출 거동에 대해 조사하였다. 816˚C/440MPa에서는 크리프 파단양상이 전단변형에 의한 입내파괴를 나타내었으나, 982˚C/152MPa에서는 표면과 접하는 결정입계에서 입계산화에 의해 표면에너지의 감소로 균열이 나타나 진행되는 입계파괴가 나타났다. M(sub)23C(sub)6 탄화물이 816˚C에서는 주로 결정입계에서와 전단변형에 의한 입내균열을 따라 석출하였으나, 982˚C에서는 결정입계 뿐만 아니라 입내에서는 석출하였으며 석출양은 증가하였다. σ상은 Cr(sub)23C(sub)6 탄화물에서 핵생성 후 기지로 성장하며, 온도가 높고 응력이 주어지면 Cr(sub)23C(sub)6 탄화물의 양이 증가하여 σ상의 석출도 많아졌다.
        4,000원