검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 39

        1.
        2023.11 구독 인증기관·개인회원 무료
        The primary heat transport system consists mainly of the in-core fuel channels connected to the steam generators by a system of feeder pipes and headers. The feeders and headers are made of carbon steel. Feeders run vertically upwards from the fuel channels across the face of the reactor and horizontally over the refueling machine to the headers. Structural materials of the primary systems of nuclear power plants (NPPs) are exposed to high temperature and pressure conditions, so that the materials employed in these plants have to take into accounts a useful design life of at least 30 years. The corrosion products, mainly iron oxides, are generated from the carbon steel corrosion which is the main constituent of the feeder pipes and headers of this circuit. Typical film thickness on CANDU-PHWR surface is 75μm or 30mg/cm2. Deposits on PHWR tends to be much thicker than PWR due to use of carbon steel and also for the source of corrosion products available on the carbon steel surface. Degradation of carbon steel for the feeder pipes transferring the primary system coolant by flow-assisted corrosion in high temperature has been reported in CANDU reactors including Point Lapreau, Gentully-2, Darlington and Bruce NPPs. The formation of Fe3O4 film on a carbon steel surface reduces the dissolution rate of steel substantially. The protectiveness of the Fe3O4 film over the carbon steel is affected by the environmental factors and the operational parameters of the feeder pipes, including the velocity, wall shear stress, solution pH, temperature, concentration of dissolved iron, quality of solution, etc. For effective chemical decontamination of these thick oxides containing radionuclides such as Co-60, it is necessary to understand the corrosion behaviors of feeder pipes and the characteristics of oxide formed on it. In this work, we investigated the growth of oxide films that develop on type SA-107 Gr. B carbon steel in high temperature water and steam environment by scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GD-OES) for the quantification and the solidstate speciation of metal oxide films. This study was especially focused to set the experimental tests conditions how to increase the oxide thickness up to 50 m by changing the oxidation conditions, such as solution chemistry and thermo-hydraulic conditions both temperature and pressure and so on.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The safety of deep geological disposal systems has to be ensured to guarantee the isolation of radionuclides from human and related environments for over a million years. Over such a long timeframe, disposal systems can be influenced by climate change, leading to significant long-term impacts on the hydrogeological condition, including changes in temperature, precipitation and sea levels. These changes can affect groundwater flow, alter geochemical conditions, and directly/ indirectly impact the stability of the repository. Hence, it is essential to conduct a safety assessment that considers the long-term evolution induced by climate change. In this context, the Korea Atomic Energy Research Institute (KAERI) is developing the Adaptive Process-based total system performance assessment framework for a geological disposal system (APro). Currently, numerical modules for APro are under development to account for the longterm evolution that can influence groundwater flow and radionuclide transport in the far-field of the disposal system. This study focuses on the development of two numerical modules designed to model permafrost formation and buoyance force due to relative density changes. Permafrost is defined as a ground in which temperature remains below zero-isotherm (0°C) continuously for more than two consecutive years. In regions where permafrost forms, the relative permeability of porous media is significantly reduced. The changes in permeability due to permafrost formation are modelled by calculating the unfrozen fluid content within a porous medium. Meanwhile, buoyancy force can occur when there is a difference in density at the boundary of two distinct water groups, such as seawater (salt water) and freshwater. Sea level change associated with climate change can alter the boundary between seawater and freshwater, resulting in changes in groundwater flow. The buoyancy force due to relative density is modelled by adjusting concentration boundary conditions. Using the developed numerical modules, we evaluated the long-term evolution’s effects by analyzing radionuclide transport in the far-field of the disposal system. Incorporating permafrost and buoyancy force modelling into the APro framework will contribute valuable insights into the complex interactions between geological and climatic factors, enhancing our ability to ensure the secure isolation of radionuclides for extended periods.
        3.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear power is responsible for a large portion of electricity generation worldwide, and various studies are underway, including the design of permanent deep geological disposal facilities to safely isolate spent nuclear fuel generated as a result. However, through the gradual development of drilling technology, various disposal option concepts are being studied in addition to deep geological disposal, which is considered the safest in the world. So other efforts are also being made to reduce the disposal area and achieve economic feasibility, which requires procedures to appropriately match the waste forms generated from separation process of spent nuclear fuel with disposal option systems according to their characteristics. And safety issue of individual disposal options is performed through comparison of nuclide transport. This study briefly introduces the pre-disposal nuclide management process and waste forms, and also introduces the characteristics of potential disposal options other than deep geological disposal. And environmental conditions and possible pathways for nuclide migration are reviewed to establish transport scenarios for each disposal option. As such, under this comprehensive understanding, this study finally seeks to explore various management methods for high-level radioactive waste to reduce the environmental burden.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Canada’s Pickering Unit 3 was performed a three-stage decontamination from June to August 1989 in preparation for pressure tube replacement. The first step was a reducing CAN-DECON treatment to dissolve the magnetic film inside the reactor, which was applied following partial defueling of the reactor core. The second step was an oxidative dilute alkaline permanganate treatment to remove the chromium-rich oxides of the stainless steel parts. And the final CAN-DECON step was applied continuously after completely removing fuel from the reactor core. In situ pipe gamma-ray spectroscopy techniques were applied to measure radioactivity within feeder piping during various stages of Pickering Unit 3 decontamination. Measurements were performed at a maximum dose rate of 5 mSv/h, and both the detector and the scanned feeder pipe were properly shielded from other neighboring pipes. 60Co was the dominant radionuclide in feeder piping prior to decontamination. And radionuclides 103Ru, 95Zr, 95Nb, 59Fe, 140La and 124Sb were detected. The Co-60 radioactivity was 2.09×105 Bq/cm2 before decontamination and 3.11×103 Bq/cm2 after decontamination in the inlet feeder pipe T18. And in the outlet feeder pipe P21, it is 2.56×104 Bq/cm2 before decontamination and 2.04×103 Bq/cm2 after decontamination.
        5.
        2023.05 구독 인증기관·개인회원 무료
        LILW disposal repository in Gyeongju, South Korea is considered with a concrete mixture that uses Ordinary Portland Cement (OPC) partially substituted with supplementary cementitious materials (SCMs). The degradation of cementitious materials that result from chemical and physical attacks is a major concern in the safety of radioactive waste disposal. We present a reactive transport model utilized as one of the geochemical simulation approaches for the timescales of concern that range from hundreds to thousands of years. The purpose of this study is to investigate the sensitivity of parameters in concrete disposal systems and to evaluate the influence of various assumptions on the chemical degradation of the systems using a reactive transport model. A reactive transport model in the concrete disposal vault was developed to evaluate the behavior of engineered barriers composed of cementitious materials. The sensitivity analysis was performed using reactive transport models through the coupling between COMSOL and PHREEQC. The databases selected for the analysis are the Thermochimie database presented by ANDRA. Among many variables considered, two variables that can highly affect chemical degradation were selected for detailed sensitivity analysis for dealing with uncertainties. This is important because the chemical degradation mechanism is generally sensitive to precipitation and diffusion coefficient. The first factor is precipitation, which might be the most important factor in chemical degradation because it acts as a calcium leaching of cementitious materials in a disposal system in a highly alkaline environment, increasing the porosity of the system. To predict the change in annual precipitation, the measurement of the precipitation observatory station in the nearest area of Gyeongju for the past 80 years was collected. The second factor is the diffusion coefficient, which plays an essential role in the durability of the concrete disposal system, promoting the decalcification of cementitious minerals, accelerating system degradation, and increasing the porosity of its system, thereby facilitating the migration of radionuclides. The diffusion coefficient values used in studies similar to this work were calculated and evaluated using the box-and-whisker method. The results of the sensitivity analyses for the reactive transport model in the concrete disposal system will be presented. The sensitivity cases show that the results obtained are much more sensitive to changes in transport parameters.
        6.
        2022.10 구독 인증기관·개인회원 무료
        In preparation for the decommissioning of Kori unit 1 of the nuclear power plant (NPP), new containers of package, transportation, and disposal are being developed that reflect the type, generation amount, and radiological characteristics of decommissioning waste. The containers under development have internal volumes of 1 m3 ~ 14 m3 and loading weights of 1 ton ~ 35 tons, which are larger in size and have a higher loadable weight compared to the 200 L drum and IP-2 type transport container currently being used for packaging and transporting waste. So, there is a limit to handling new containers using existing transport systems (cranes, spreaders, forklifts, transport vehicles, etc.). Therefore, in this study, the status of handling equipment in NPP and disposal facilities was reviewed, the flow from the generation to disposal of decommissioning waste was analyzed, and the possibility of handling new container or the necessity of introducing new systems were derived. Except for some high-dose/high-radioactive wastes among decommissioning wastes, all wastes are finally disposed of through decommissioning area, temporary storage facility, waste treatment facility, waste storage facility, and receipt and storage building. The decommissioning area, temporary storage facility, and waste treatment facility are newly established areas for the decommissioning and should be equipped with a spreader/crane with a lifting weight of 15 tons, 35 tons, and 40 tons in consideration of the weight of the package to be handled in the zone. The waste storage facility has a 7.5 tons crane, so it can handle only some of the lower weight of the 5 to 35 tons package that is expected to be handled. Therefore, additional installation of spreaders/cranes, each with a lifting capacity of 15 tons and 40 tons, is required. The maximum loading weight of forklifts and transport vehicles operating at NPP, and disposal facilities is 10 tons and 12.6 tons, respectively. To transport the package, the facility must additionally install 15 tons and 40 tons forklifts, and 40 tons transport vehicles. Since the lifting weight of the crane installed on the transport vessel is also low at 12.5 tons, it is necessary to change the design of the existing or replace it with 40 tons to handle high-weight package. The results of this study will be used as basic data for the establishment of transport systems in the relevant area and facility, and design requirements for each equipment will be derived through additional research.
        7.
        2022.10 구독 인증기관·개인회원 무료
        This study is to investigate fuel cladding temperature in a transport system for the purpose of developing a methodology for evaluating the thermal performance of spent fuel. Detailed temperature analysis in the transport system is important because the degradation mechanism of the fuel cladding is generally sensitive to temperature and temperature history. In such a system, the magnitude of the temperature change is determined by examining the temperature sensitivity of fuel assemblies and system components including fuel cladding temperature, considering the material properties, component specifications, component aging mechanism, and heat transfer mechanism. The sensitivity analysis is performed using heat transfer models by computational fluid dynamics for the horizontal transport system. The heat transfer within the system by convection, conduction and thermal radiation is calculated by thermal-hydraulic analysis code FLUENT. The calculation region is divided into a basket cell and a transport cask. The thermal analysis of the basket cell is for predicting the fuel cladding temperature. And the reason for analyzing the transport cask is to provide the boundary condition for the basket cell by reflecting the external environmental conditions. Here, the basket cell containing the spent fuel assembly is modeled on the homogeneous effective thermal conductivity. The purpose of this analysis is to evaluate fuel cladding temperatures for the following four main items. That is the effect of surface emissivity changes in basket due to the oxide layer of the fuel cladding, the effect of degradation of the canister backfill helium gas, the effect of fuel assembly position in basket cell on fuel cladding and basket temperatures in canister, and the effect of using the homogeneous effective thermal conductivity model instead of the fuel assembly in basket cell. As a result of the analysis, the maximum temperatures in basket cells are evaluated for the above four items. Thermal margins for each item are investigated for thermal performance requirements (e.g., peak clad temperature below 400oC).
        9.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the advent of the 4.0 era of logistics due to the Fourth Industrial Revolution, infrastructures have been built to receive the same services online and offline. Logistics services affected by logistics 4.0 and IT technology are rapidly changing. Logistics services are developing using technologies such as big data, artificial intelligence, blockchain, Internet of things, and augmented reality. The convergence of logistics services and various IT new technologies is accelerating, and the development of data management solution technology has led to the emergence of electronic cargo waybill to replace paper cargo waybill. The electronic waybill was developed to supplement paper waybill that lack economical and safety. However, the electronic waybill that appeared to complement the paper waybill are also in need of complementation in terms of efficiency and reliability. New research is needed to ensure that electronic cargo waybill gain the trust of users and are actively utilized. To solve this problem, electronic cargo waybill that combine blockchain technology are being developed. This study aims to improve the reliability, operational efficiency and safety of blockchain electronic cargo waybill. The purpose of this study is to analyze the blockchain-based electronic cargo waybill system and to derive evaluation indicators for system supplementation.
        4,300원
        16.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The incidents related to transporting hazardous materials may cause serious impacts on neighborhood and surrounding areas. It is essential to have a real-time safe management system for incidents prevention of transporting hazardous materials. Currently, the system is not integrated into one channel, which makes it difficult to control an incidents response. Another problem is that event status is not appropriately shared among authorities having responsibilities taking down the incidents. This paper investigates previous studies covering the real-time safety management system for hazard material transports and suggests an integrated management system that helps communicate effectively and promptly.
        4,000원
        17.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fish exportation using airplanes incurs sizable logistics costs (12,000KRW/kg), according for more than 45% out of the total export cost. Thus, it is unreasonable to quantitatively expand fish exportation by means of air transport. In addition, cases of failing to deliver fish at the right time to the right place occurs frequently due to the limited cargo capacity and insufficient cargo space of airplanes, especially during the peak season. Therefor, a technology that not only minimizes the logistics costs but also transports fish freshly and safely, in the case of long distance exportation to countries such as the United States and Taiwan, should be developed. In this study, a live fish container control system for long distance transportation was designed and implemented. Live flatfish (2,000kg) were selected as the target fish, were transported to the United States to analyze and verify the performance of the a live fish container control system and transportation ability.
        4,000원
        18.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Keeping in mind that there are only limited social, economic and administrative resources for reducing marine casualties, the result of statistical survey showed the loopholes of safe maritime transport system, and rendered that most casualties occurred in coastal waters by human errors. When the IMO Marine Casualty Investigation Code was utilized to reveal any structural vulnerability of the international measures, IMO was required to expand its roles to enhance the interface between Liveware and Environment of SHEL model. So, several risk assessment models were studied and found that Maritime Safety Audit System of the Republic of Korea could be a good example of enhancing safe interface between navigators (Liveware) and the navigational circumstances (Environment). It could be dealt with at IMO level as a tool for applying at human error enforcing waters. International cooperative research for upgrading risk assessment modes should also be future terms of reference.
        4,000원
        19.
        2013.09 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to develop of semen transport system for cryopreservation and fertility in bull sperm. The ejaculated semen were diluted with Triladyl containing 20% egg-yolk for transportation. Diluted semen was transported by three methods that there were wrapping tissue (Tissue), sinking under 30℃ water (Water) and sinking between warm water and air (Air) methods. Semen was transported within 2 hours in 0.3℃. For this study, the freezing of diluted semen were added with Triladyl containing 20% egg-yolk. And frozen-thawed sperm were estimated with SYBR14/PI double stain for viability, FITC-PNA/PI double stain for acrosome reaction analysis and Rhodamine123 double stain for mitochondrial intact assessment. In results, live sperm (SYBR+/PI-) in Air treatment group (43.3±4.7%) was significantly (p<0.05) higher than other treatment groups (Tissue: 16.3±2.7% and Water: 27.5± 3.1%), dying sperm (SYBR+/PI+) in Air treatment group (55.6±4.7%) was significantly lower than other treatment groups (Tissue: 77.6±3.2% and Water: 67.6±3.3%) (p<0.05). Acrosome reaction in Air treatment group (0.2±0.1%) within live sperm (PI negative region) was significantly (p<0.05) lower than other treatment groups (Tissue: 0.7±0.2% and Water: 0.5±0.1%), the acrosome reaction in Air treatment group (28.6±2.8%) within all sperm also was significantly lower than other treatment groups (Tissue: 44.2±1.8% and Water: 36.2±2.0%) (p<0.05). And mitochondrial intact in Air treatment group within live (97.1±0.4%) and all (61.9±3.3%) sperm were significantly higher than other treatment groups (Tissue: 85.2±3.3%, Water: 87.8±2.9% within live sperm and Tissue: 49.28±3.7%, Water: 42.0±3.1% within all sperm) (p<0.05). Therefore, we suggest that transportation by sinking method between warm water and air was beneficial to improvement of fertility in frozen-thawed in bull semen.
        4,000원
        1 2