검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 23

        22.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        진피 상층부 모세혈관은 젊은 사람에 비해 노인에서 그 수와 크기가 감소되어 있어 피부에서 모세혈관이 차지하는 비율이 나이에 따라 급격히 낮아진다. 연교는 물푸레나무과에 속하는 개나리 열매를 건조한 것으로 주로 염증성 또는 항균성 질환에 오랫동안 사용되어져온 약재로서 지금까지 피부 혈관신생과 관련된 효능은 보 고되지 않았다. 따라서 본 연구에서는 연교 추출물이 혈관신생과 관련된 인자들에 미치는 영향을 피부 각질형성 세포주를 이용하여 조사하고자 하였다. 우리는 먼저 연교 추출물이 혈관신생과 관련된 인자들의 발현에 어떤 영향을 주는지 알아보고자 각질형성세포에 연교 추출물을 처리하고 혈관신생과 관련된 55개 단백질의 발현을 분석하였다. 발현 변화를 보인 인자들 중 혈관내피세포 성장인자(VEGF, vascular endothelial growth factor) 는 강력한 혈관신생 촉진인자로서 연교 추출물에 의해 유의하게 발현이 증가되었다. 따라서 연교 추출물이 VEGF 생성에 미치는 영향에 대해 자세히 알아보고자 연교 추출물을 농도별로 세포에 처리하고 단백질 발현과 mRNA 발현 변화를 조사한 결과, 연교 추출물은 VEGF의 유전자 수준뿐만 아니라 단백질 수준의 발현을 2배 이상 농도 의존적으로 증가시켰다. 다음으로 연교 추출물에 의한 VEGF 발현 증가에 관여하는 신호전달 기전을 밝히고자 MAPK 활성을 살펴본 결과, 연교 추출물을 세포에 처리하면 5 min 내 p38 MAPK의 활성이 관찰되었 으며, 특이적 억제제 전처리를 통해 p38 MAPK 활성을 억제하면 연교 추출물을 처리하더라도 VEGF의 유전자 및 단백질 발현이 완전히 억제됨을 확인하였다. 이러한 결과로부터 연교는 피부 각질형성세포에 작용하여 p38 MAPK 활성을 통해 VEGF 생성을 유도함을 알 수 있었고, 피부에서 노화에 따른 표피아래 모세혈관 손상을 개선하는데 도움을 줄 수 있는 후보 물질로서 연교의 새로운 효능을 제안한다.
        23.
        2014.09 서비스 종료(열람 제한)
        The majority of early conceptus mortality in pregnancy occurs during the peri-implantation stage, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation phase. This maternal-conceptus interaction is especially crucial in pigs because in them non-invasive epitheliochorial placentation occurs, in which the pre-implantation phase is prolonged. During the pre-implantation period, conceptus survival and the establishment of pregnancy are known to depend on the developing conceptus receiving an adequate supply of histotroph, which contains a wide range of nutrients and growth factors. Evidence links epidermal growth factor (EGF), insulin- like growth factor-I (IGF-I), vascular endothelial growth factor (VEGF), and colony-stimulating factor 2 (CSF2) to embryogenesis or implantation in various mammalian species; however, in the case of pig, little is known about such functions of these growth factors, especially their regulatory mechanisms at the maternal-conceptus interface. Therefore, the objectives of this study were to determine: 1) the temporal and cell-specific expression of EGF, IGF-I, VEGF, and CSF2 signaling systems in the porcine endometrium during the estrous cycle and early pregnancy; 2) the potential intracellular signaling pathways responsible for the activities of these four factors in primary porcine trophectoderm (pTr) cells; and 3) the changes in cellular activities induced by these promising factors. First, the functional effect and cellular signaling cascades in pTr cells induced by EGF, which exhibits potential growth-promoting activities on the conceptus and endometrium, were investigated. EGFR mRNA and protein were abundant in endometrial luminal epithelia (LE) and glandular epithelia (GE), stratum compactum stroma, and conceptus trophectoderm on Days 13-14 of pregnancy, but not in any other cells of the uterus. EGF treatment of pTr cells increased the abundance of phosphorylated (p)-AKT1, p-ERK1/2 MAPK and p-P90RSK in the nucleus and/or cytoplasm when compared with the levels in control cells. Furthermore, EGF-stimulated phosphorylation of AKT1 and ERK1/2 MAPK were inhibited in pTr cells transfected with an EGFR siRNA, and compared with control siRNA- transfected pTr cells, the EGFR siRNA-transfected pTr cells exhibited an increase in the expression of gene encoding interferon (IFN)-δ and transforming growth factor (TGF) β-1; by contrast, no effect was detected on the expression of the gene encoding IFN-γ. Moreover, EGF stimulated the proliferation and migration of pTr cells, but these stimulatory effects were blocked by pharmacological inhibitors such as SB203580 (a p38 inhibitor), U0126 (a MAPK inhibitor), rapamycin (an MTOR inhibitor), and LY294002 (a PI3K inhibitor). Second, IGF-I was examined. IGF-1 is another promising growth factor that is known to play key roles in reproductive processes; however, little is known about IGF-I-induced functional effects and regulatory mechanisms during peri-implantation in pigs. In this study, endometrial type I IGF receptor (IGF-IR) mRNA was determined to increase substantially during early pregnancy relative to the level during the estrous cycle, and the mRNAs of both IGF-I and IGF-IR were abundant in endometrial LE and GE, stroma and conceptus trophectoderm on Day 12 of pregnancy. Moreover, IGF-I treatment potently increased the amounts of p-AKT1 and, ERK1/2 MAPK in the nucleus and cytoplasm and of RPS6 in the cytosol when compared with the amounts in untreated pTr cells, and IGF-I-induced activation of AKT1 and ERK1/2 was blocked by LY294002. Furthermore, IGF-I strongly stimulated both the proliferation and the migration of pTr cells, but these effects were inhibited by SB203580, U0126, rapamycin and LY294002. Third, this study focused on VEGF, which was identified as a potential mediator of the fetal-maternal dialog that regulates the development of the peri-implantation porcine conceptus. In addition to its known angiogenic effects, VEGF has been suggested to play roles in the development of the early embryo, but VEGF-induced effects on the peri-implantation conceptus remain unknown. Results of this study revealed that endometrial VEGF, VEGF receptor (VEGFR)-1, and VEGFR-2 mRNA levels in endometrial LE and GE, endothelial blood vessels, and scattered cells in the stroma were more abundant during the peri-implantation period of pregnancy than during the estrous cycle. Moreover, VEGF treatment of pTr cells increased the abundance of p-AKT1, p-ERK1/2, p-p70RSK, p-RPS6 and p-4EBP1, and the addition of LY294002 suppressed VEGF-induced phosphorylation of ERK1/2 and AKT1. Furthermore, VEGF potently stimulated both the proliferation and the migration of pTr cells, but these effects were inhibited in the presence of SB203580, U0126, rapamycin and LY294002. The fourth promising cytokine studied was CSF2, which is also known as granulocyte-macrophage colony-stimulating factor (GM-CSF). CSF2 plays a role in facilitating mammalian early embryonic development. In this study, endometrial CSF2 mRNA expression was determined to be increased during the peri-implantation period relative to the mRNA level during the estrous cycle. In pTr cells, CSF2 significantly induced the activation of AKT1, ERK1/2, MTOR, p70RSK, and RPS6, but not of STAT3, and the addition of LY294002 abolished CSF2-induced increases in p-ERK1/2, p-MTOR, and p-AKT1 levels. Furthermore, CSF2 strongly stimulated pTr cell proliferation, an effect that was blocked by U0126, rapamycin and LY294002. Collectively, these results provide new insights into the potential mediators that regulate the development of the peri-implantation conceptus at the fetal-maternal interface. These results indicate that endometrial- and/or conceptus derived EGF, IGF-I, VEGF, and CSF2 critically affect the growth and development of porcine trophectoderm cells, and that these stimulatory effects are coordinately regulated by multiple cellular signaling cascades including the PI3K-AKT and ERK1/2 MAPK pathways during early pregnancy in pigs.
        1 2