검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.05 구독 인증기관·개인회원 무료
        The mechanical safety of the container designed according to the IP-2 type technology standard was analyzed for the temporary storage and transportation of Very-Low-Level-Waste (VLLW) for liquid occurring at the nuclear facilities decommissioning site. The container was designed and manufactured as a composite shielding container with the effect of storing and shielding liquid radioactive waste using High Density Polyethylene (HDPE) and eco-friendly shielding material (BaSO4) with corrosion and chemical resistance. The main material of the composite shielding container is HDPE and BaSO4, the material of the cover, cage and pallet is SUS304, and the angle guard is elastic rubber. The test and analysis requirements were analyzed for structural analysis of container drop and lamination test. As test requirements for IP-2 type transport containers should be verified by performing drop and lamination tests. There should be no loss or dispersion of contents through the 1.2 m high free-fall drop and lamination test for a load five times the amount of transported material. ABAQUS/Explicit, a commercial finite element analysis program, was used for structural analysis of the drop and lamination test of the transport and storage container. (Drop test) It was confirmed that the container was most affected when it falls from a 45-degree slope. Although plastic deformation was observed at the edge axis of the cover, it was evaluated that the range of plastic deformation was limited to the cover and cage, and stress within the elastic limit occurred in the inner container. In the analysis results for other falling direction conditions, it was evaluated that stress within the elastic limit was generated in the inner container except for minor plastic deformation. In the case of on-site simulation evaluation, deformation of the inner container and frame due to the drop impact occurred, but leakage and loss of contents, which are major evaluation indicators, did not occur. (Lamination test) The maximum stress was calculated to be 19.9 MPa under the lamination condition for a load 5 times the container weight, and the maximum stress point appeared at the corner axis of the pallet. The calculated value for the maximum stress is about 10%, assuming the conservative yield strength of SUS304 is 200 MPa. It was evaluated that stress within the limit occurred. In the case of on-site simulation evaluation, it was confirmed that there was no container deformation or loss of contents due to the load.
        2.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The structural safety of prototype transport and storage containers for very low-level radioactive liquid waste was experimentally estimated for its localization development. Transport containers for radioactive liquid waste have been researched and developed, however, there are no standardized commercial containers for very low-level radioactive waste in Korea. In this study, the structural safety of the designated IP-2 type container capable of transporting and temporarily storing large amounts of very low-level liquid waste, which is generated during the operation and decommissioning of nuclear power plants, was demonstrated. The stacking and drop tests, which were conducted to determine the structural integrity of the container, verified that there was no external leakage of the contents in spite of its structural deformation due to the drop impact. This study shows the effort required for the localization of the technology used in manufacturing transport and storage containers for very low-level radioactive liquid waste, and the additional structural reinforcement of the container in which the commercial intermediate bulk container (IBC) external frame was coupled.
        4,000원